## IHMTC2017-12-0945

## LAMINAR FLUID FLOW AND HEAT TRANSFER **CHARACTERISTICS OF WAVY MICROCHANNELS WITH** WALL PHASE SHIFT

Angshuman Bhardwaj, Mithun Krishna P M, Deepu M, Shine S R<sup>\*</sup> Indian Institute of Space Science and Technology, Thiruvananthapuram \*shine@iist.ac.in

| ABSTRACT                            | DETAILS OF NUMERICAL SIMULATION                                         |
|-------------------------------------|-------------------------------------------------------------------------|
| > 3D Conjugate Analysis was done to | > Continuity, Navier Stokes and Energy Equations were solved using a 3D |

- investigate the influence of wall phaseshift on the flow behaviour and heat transfer characteristics of the wavy micro-channels in the low Re laminar flow regime.
- $\geq$  7 different configurations with  $\varphi = 0^{\circ}$ , 30°,45°,60°,90°,135°,180° were studied for Re = 50,100,150,200 flow conditions.
- > Single microchannel engraved on a copper block with water as working fluid was used.
- $\geq$  In the low Re regime, channel with  $\varphi =$ 60° was found to have best heat transfer characteristics.
- > With increase in Re,  $\phi = 0^{\circ}$  channel was found to perform better, which can be explained by the increase in strength of Dean vortices due to higher Re and higher asymmetry.

## conjugate analysis for a laminar, incompressible flow in steady state.

- > Single micro-channel engraved on a copper block with water as the working fluid. L= 15000  $\mu$ m,  $\lambda$  = 1000  $\mu$ m, A = 150  $\mu$ m, W x H = 400 x 400  $\mu$ m<sup>2</sup>, W<sub>w</sub> = 250  $\mu$ m.
- > Pressure based solver used. 'SIMPLE' scheme for pressure velocity coupling. 'Standard' scheme for pressure interpolation. 'Second Order Upwind' scheme for continuity, momentum and energy equations. Convergence criteria – **Residuals < 1e-6**. Schemes validated with experimental data.



View (b)Top View showing important geometric parameters of the channel (c)Cross-sectional view with dimensions, and (d)with Boundary Conditions

Validation of numerical schemes. (a) *f*-normalized pressured drop vs Re (b) *f*-fanning friction factor vs Re

## RESULTS



- flows.

"24th National and 2nd International ISHMT-ASTFE Heat and Mass Transfer (IHMTC-2017), December 27-30, BITS Pilani, Hyderabad, Telangana"