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Abstract
The impact of different formulations of background error covariances (BECs) are examined for the

simulation of Uttarakhand heavy rainfall episode with a regional 4-dimensional variational (4DVar) data
assimilation (DA) system. Three BEC formulations are analyzed, in which two of them employ stream
function and velocity potential (ψ and χ) as momentum variables and the third one uses zonal and
meridional velocity components (u and v) as momentum variables. Results from the study show that
the ψχ based experiments have better skill in reproducing the observed rainfall distribution, particularly
when the moisture variable is also analyzed the multivariate balance relations.

Introduction

A major challenge in employing the variational data assimilation system is the formula-
tion of a realistic error statistics of the forward model. This is usually achieved through
the modeling of background error covariance (BEC) matrix. Different sets of control vari-
ables are being used in the formulation of BEC.1 The present study focuses on the impact
of different control variables used in the BEC formulation on the simulation of Uttarak-
hand heavy rainfall event that occurred in 2013.

Uttarakhand heavy rainfall event: An overview

Figure 1: NOAA satellite image of the cloud cover
over Uttarakhand, valid at 00Z 17 June 2013

• Exceptionally heavy rainfall occurred
over Uttarakhand during 14-17 June
2013.

• More than 350 mm rainfall was
recorded for 17 June 2013.

• The heavy rainfall events are attributed
to the manifestation of dynamical in-
teraction between the tropical, mon-
soonal circulation and the mid-latitude
western disturbances.

WRF-4DVar DA System
The four dimensional variational (4DVar) scheme within the Weather Research and
Forecast (WRF) model has been utilised in this study. The 4DVar method is based on
the minimization of the cost-function J(x), which is defined as:

J(x(t0) =
1

2
[(x(t0)− xb(t0))

TB−1(x(t0)− xb(t0))] +

N∑
i=i

[(H(xi)− yi0)
TR−1(H(xi)− yi0)] (1)

Here, x is the state vector, xb is background field, B is the background error covariance
matrix, H is the observation operator, which maps the model variable to the observa-
tion space, yo is the observation and R is the observation error covariance matrix.

BEC Modeling

• BEC is considered to be a critical component of variational DA systems.
• It can propagate the assimilated information to adjoining areas and to other vari-

ables.
• Dynamical balances among the variables are represented using regression relations.

Model configuration

The WRF ARW model version 3.8.1 has been used in this study.

Figure 2: Model domain

• 3 domains with 27, 9, and 3 km
horizontal resolution.

• 36 vertical levels.
• Kain-Frisch scheme for convec-

tion (except for domain 3).
• Eta-Ferrier scheme for micro-

physics parameterization.
• YSU scheme for boundary layer

processes.
• Noah scheme for land surface

processes.
• RRTM model and Dudhia

scheme for longwave and
shortwave parameterization.

Numerical experiments

• A spin-up run for 6h
• 5 cyclic assimilations -

00Z 15 to 00Z 16 June 2013
• 24h free forecast -

00Z 16 to 00Z 17 June 2013
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ble 2. Among the three cases, the last event is the Uttarakhand cloudburst event, which258

took life of more than 5000 people.259

Table 1. List of experiments and corresponding control variables.260

Experiment Control variables used

ψχ-BE ψ, χu ,Tu , Psu , rh
ψχ-MBE ψ, χu ,Tu , Psu , rhu
UV -BE u, v,T , Ps, rh

For each case, three sets of experiments were carried out: (i) a ψχ-BE run with261

4DVar assimilation utilizing ψχ-BE as background error, (ii) a ψχ-MBE run with 4DVar262

assimilation utilizing ψχ-MBE as background error, and finally (iii) a UV -BE run with263

4DVar assimilation utilizing UV -BE as background error. Initial and boundary conditions264

for all the experiments were derived from National Centers for Environmental Prediction’s265

Global Forecast System 24h forecast fields at half a degree horizontal resolution. Five266

cyclic assimilation for an entire day at standard synoptic hours (00Z, 06Z, 12Z, 18Z, and267

next 00Z) were performed for each experiment. A short spin-up run for 6h also performed268

prior to the 4DVar assimilation to achieve better mass-wind balance. A longer forecast269

was initiated from the final analysis field for a period of 48h without any further assim-270

ilation. For instance, for the first rainfall event (19-21 September 2008), the experiment271

conducted is as follows: a spin-up run from GFS forecast field from 18Z 17 to 00Z 18272

September 2008. Thereafter five cyclic 4DVar assimilation by employing ψχ-BE, from273

00Z 18 to 00Z 19 September 2008 and then a longer forecast was launched from 00Z 19274

to 00Z 21 September 2008. The above experiment was repeated with other two BECs.275

Following similar design, experiments for other two rainfall events also carried out.276

Table 2. List of cases studied and experimental details277

Case Duration Period of assimilation Free forecast

Case 1 19-21 September 2008 00Z 18 - 00Z 19 September 2008 00Z 19 - 00Z 21 September 2008

Case 2 15-17 August 2011 00Z 14 - 00Z 15 August 2011 00Z 15 - 00Z 17 August 2011

Case 3 16-18 June 2013 00Z 15 - 00Z 16 June 2013 00Z 16 - 00Z 18 June 2013

4 Analysis of single observation increments278

Single observation experiments were conducted to understand the impact of BEC on279

the 4DVar assimilation system. In the case assimilation of single observation, the analysis280

increment manifests itself as a better tool to understand the response of the assimilation281

system to the observation assimilated. Following Huang et al. [2009], the 4DVar solution282

for single observation assimilation can be written as:283

M(xa − xb) = (MBMT )i (σ2
b +σ

2
o)−1(yi − xi ) (11)

where, σb and σo are errors associated with background and observations respectively.284

All other symbols have same meaning as in Eq. 1. As evident from Eq. 11, the analysis285

increment would be proportional to the BEC. Moreover, apart from the nature of the BEC,286

the model dynamics also have a role in determining the analysis increment. The effec-287

tive BEC or the structure function can be examined by visualizing the analysis increments288

–8–

Initial and boundary conditions are derived from NCEP-GFS forecast fields. Surface and
upper-air conventional observations and satellite derived winds are utilized for assimi-
lation.

Single observation experiments

Figure 3: Analysis increment in ’u’, ’v’, ’T ’, and ’Q’ for assimila-
tion of single ’u’ observation when ψχ-BE, ψχ-MBE, and uv-BE
are employed.
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Figure 4: Vertical variation of horizontal
length scale for all the control variables.
In legend, ’1’, ’2’, and ’3’ indicate ψχ-BE,
ψχ-MBE, and uv-BE respectively.

Assimilation of single ’u’ observation utilizing all the three BECs reveals the univari-
ate nature of the uv-BE (Fig. 3). The multivariate nature of humidity variable in ψχ-
MBE enables that wind information to influence the moisture field also. The addi-
tional regression coefficients introduced in ψχ-MBE also show notable impact on v
and T fields.
The most striking feature is the difference in information spread with the uv-BE.

Improvement in the analysis fields

Analysis fields show that the uv-BE fields are more closer to the radiosonde obser-
vations (Fig. 5). The distribution of observation minus analysis (O-A) fields (with
respect to surface synoptic observations) also shows lower standard deviation for the
uv-BE analysis (Fig. 6).
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Figure 5: RMS fit to radiosonde observations
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Figure 6: Standard deviation of O-A fields
with respect to synoptic obserations

Rainfall forecast verfication

Figure 7: 24h accumulated rainfall for ψχ-BE,
ψχ-MBE, uv-BE, and TRMM observation
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Figure 8: Skill scores for 24h accumulated
rainfall for ψχ-BE, ψχ-MBE, uv-BE

Even though the analysis fields found to be better for the uv-BE experiment, the same
did not yield the best rainfall forecast (Fig. 7). Quantitative skill scores indicate that
the ψχ-MBE forecast have better rainfall forecast skill, especially for the higher rain-
fall thresholds (Fig. 8).

Conclusions
• There is a significant difference in the spread of assimilated observations among the
uv-based BEC and ψχ-base BECs

• The uv-BE analysis fields show more closeness to the radiosonde observations.
• The ψχ-MBE experiment shows appreciable improvement in rainfall 24h forecast.
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