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Abstract Single observation experiments

The impact of different formulations of background error covariances (BECs) are examined for the
simulation of Uttarakhand heavy rainfall episode with a regional 4-dimensional variational (4DVar) data
assimilation (DA) system. Three BEC formulations are analyzed, in which two of them employ stream
function and velocity potential (¢ and x) as momentum variables and the third one uses zonal and
meridional velocity components (v and v) as momentum variables. Results from the study show that
the 1y based experiments have better skill in reproducing the observed rainfall distribution, particularly
when the moisture variable is also analyzed the multivariate balance relations.
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A major challenge in employing the variational data assimilation system is the formula-
tion of a realistic error statistics of the forward model. This is usually achieved through
the modeling of background error covariance (BEC) matrix. Different sets of control vari-
ables are being used in the formulation of BEC.! The present study focuses on the impact
of different control variables used in the BEC formulation on the simulation of Uttarak-
hand heavy rainfall event that occurred in 2013.
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Uttarakhand heavy rainfall event: An overview

Figure 4: Vertical variation of horizontal
length scale for all the control variables.
In legend, '1’, ’2’, and "3’ indicate 1) x-BE,
1 x-MBE, and uv-BE respectively.

e Exceptionally heavy rainfall occurred
over Uttarakhand during 14-17 June

2013. Figure 3: Analysis increment in "u’, 'v’, "I”, and Q) for assimila-
e More than 350 mm rainfall was tion of single ‘v’ observation when 1 x-BE, 1 x-MBE, and uv-BE
recorded for 17 June 2013. are employed.

e The heavy rainfall events are attributed

) : e Assimilation of single ‘u” observation utilizing all the three BECs reveals the univari-
to the manifestation of dynamical in-

. ) ate nature of the uv-BE (Fig. 3). The multivariate nature of humidity variable in -
teraction between the tropical, mon- MBE enables that wind information to influence the moisture field also. The addi-

: L soonal circulation and the mid-latitude tional regression coefficients introduced in ¥ y-MBE also show notable impact on v
Figure 1: NOAA satellite image of the cloud cover western disturbances. d T field
over Uttarakhand, valid at 00Z 17 June 2013 an €las.

WRF-4DVar DA System

The four dimensional variational (4DVar) scheme within the Weather Research and
Forecast (WRF) model has been utilised in this study. The 4D Var method is based on Improvement in the an alysis fields
the minimization of the cost-function J(x), which is defined as:

The most striking feature is the difference in information spread with the uv-BE.

1 DT 1 ; 1 o | Analysis fields show that the uv-BE fields are more closer to the radiosonde obser-
J(z(ty) = 5[@(750) —z°(tp))” B~ (x(to) — ="(tn))| + Z[(H () —yp)” B~ (H(xi) —yp)] (1) vations (Fig. 5). The distribution of observation minus analysis (O-A) fields (with
1=1 respect to surface synoptic observations) also shows lower standard deviation for the

uv-BE analysis (Fig. 6).

Here, z is the state vector, 2° is background field, B is the background error covariance
matrix,  is the observation operator, which maps the model variable to the observa- .
tion space, y° is the observation and R is the observation error covariance matrix. w0 LT TN a0 [T TN o

300 300
400 400

500
600

500
600

Pressure (hPa)
Pressure (hPa)

700
800

700
800

I I O |
TD for
[
0
|

900
| | | | | | | 1000
-

BEC Modeling

e BEC is considered to be a critical component of variational DA systems. R == A
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e [t can propagate the assimilated information to adjoining areas and to other vari- —
ables.
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¢ Dynamical balances among the variables are represented using regression relations.
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. . Figure 6: Standard deviation of O-A fields
Model Conflguratlon Figure 5: RMS fit to radiosonde observations with respect to synoptic obserations

The WRF ARW model version 3.8.1 has been used in this study.
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Figure 2: Model domain

Figure 7: 24h accumulated rainfall.for Wx-BE, Figure 8: Skill scores for 24h accumulated
1 x-MBE, uv-BE, and TRMM observation rainfall for 1y-BE, 1x-MBE, uv-BE

Numerical experiments

Even though the analysis fields found to be better for the uv-BE experiment, the same
did not yield the best rainfall forecast (Fig. 7). Quantitative skill scores indicate that
¢ A spin-up run for 6h Table 1. List of experiments and corresponding control variables. the ©x-MBE forecast have better rainfall forecast skill, especially for the higher rain-
fall thresholds (Fig. 8).

¢ 5 cyclic assimilations -

Experiment Control variables used

00Z 15 to 00Z 16 June 2013
e Vs s Pous T
¢ 24h free forecast - 4 v-MBE . xu T Psy.rh, onclusions
00Z 16 to 00Z 17 June 2013 UV-BE w,v.T.Ps,rh e There is a significant difference in the spread of assimilated observations among the
J uv-based BEC and ¢ y-base BECs

Initial and boundary conditions are derived from NCEP-GFS forecast fields. Surface and o The uv-BE analysis fields show more closeness to the radiosonde observations.
upper-air conventional observations and satellite derived winds are utilized for assimi- T e MAIHE esgpartane slhem sprmeel bl irproveman fn il 2400 farsme
lation. .
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