

Introduction

Probing Star-formation activity towards IR Dust Bubble S6

Ajay Potdar¹, Swagat Ranjan Das², Namitha Isaac¹, Anandmayee Tej¹ and Sarita Vig¹ 1. Indian Institute of Space Science and Technology (IIST), Trivandrum

2. Indian Institute of Science Education and Research(IISER), Tirupati

ajaypotdar99@gmail.com

Observations and Archival Data

• Radio continuum observations at 610 and 1280 MHz were obtained with the GMRT and data reduction was carried out using standard procedures with AIPS. • PACS and SPIRE data in the wavelength range 70 - 500

SIG-3

- µm was obtained from the Herschel Space Observatory archives.
- Molecular line data were retrieved from the archives of the MALT90 survey.

Dust Bubble S6

- Located at a distance of 2.0 kpc [1].
- Classified as a bubble showing closed ring morphology [6].

High-mass (M $\geq 8 M_{\odot}$) stars profoundly influence the surrounding interstellar medium (ISM). A combination of thermal pressure of the expanding HII region,

powerful stellar wind, and radiation pressure associated with the newly formed massive star sculpts the ISM resulting in a 'bubble'. Bubbles are ubiquitous in the

Galactic plane and observationally manifest as shells of enhanced density of swept up gas and dust between the ionization and the shock fronts encompassing a

relatively low-density, evacuated cavity around the central star. Bubbles display striking mid-infrared (MIR) morphology with 24 µm emission sampling the hot

dust enclosed within bright-rimmed 8 µm emission. The MIR emission is attributed to polycyclic aromatic hydrocarbon molecules in the photodissociation regions

surrounding O and early-B stars. The association with OB stars and HII regions make these ideal laboratories to probe high-mass star formation and their interaction

with the surrounding medium. In this work, we present a mulit-wavelength study of the southern infrared (IR) dust bubble S6. The associated ionized emission

is investigated using low-frequency radio observations and physical properties of the associated dust environment is studied in far-infrared (FIR) wavelengths.

Dust Temperature and Column Density Maps

• Line-of-sight average molecular hydrogen column density and the dust temperature maps are generated by pixel-wise modified blackbody fits to the 70, 160, 250, 350 and 500 μ m data:

 $S_{\nu}(\nu) - I_{bg}(\nu) = B_{\nu}(\nu, T_d)\Omega(1 - e^{-\tau_{\nu}})$ I_{bg} : background flux, B_{ν} : Planck's function

- Associated with a H_2O maser and a H_2 jet [1].
- Likely ionized by a central Ionizing star of spectral type O5V **-** O6V [4].
- Associated with three dense cores [1].
- Associated with a NIR star cluster [4].

Fig.1 : Spitzer-IRAC colour composite (3.6 (B), 4.5 (G), 8.0 µm (R)) of the region towards S6. The blue diamond marks the central lonizing star. "+" : nominal position of IRAS 17149-3916.

Associated Ionized Emission

- The ionized emission associated with S6 displays distinct cometary morphology at both frequencies.
- The cometary head is towards the west with a fan-like diffuse emission towards the east.
- The radio emission is more extended in the north-south direction.
- The location of radio peak is ~20 arcsec towards south-west of NIR identified ionizing star.

Details	610 MHz	1280 MHz
Synth. beam	10.69" × 6.16"	4.41" × 2.24"
<i>rms</i> noise (mJy beam ⁻¹)	0.32	0.17
Integrated flux (Jy)	14.3	12.8
Table 1: Details of continuum maps	the Radio i	nterferometric

Fig. 2 : a) 610 MHz map of the region towards S6. Contours are 3, 10, 30, 60, 120, 240 σ where σ = 0.32mJy/beam b) 1280 MHz map of the region towards S6. Contours are $3, 10, 30, 60, 120 \sigma$ where σ = 0.17mJy/beam. Red diamond: position of the ionizing star [4], green diamond : radio emission peak.

$\tau_{\nu} = \mu_{\mathrm{H}_2} m_{\mathrm{H}} \kappa_{\nu} N(\mathrm{H}_2)$

$\kappa_{\nu} = 0.1 (\nu/1000 GHz)^{\beta}$

 Ω : solid angle subtended by a pixel, τ_{ν} : optical depth μ_{H} : mean molecular weight, m_{H} : mass of hydrogen atom and κ_{ν} : dustopacity, β (=2): dust emissivity spectral index.

• The dust temperature map peaks towards the northern portion of the ionized gas. • Two column density peaks are seen lying towards the head of the cometary ionized gas distribution.

Figure 4 : a) Dust temperature, b) Column density, and c) Chi-square map of the region towards S6. GMRT 610 MHz contours are overlaid.

Dust Clumps

- Cold dust clumps are identified from the 250 m image using the Fellwalker algorithm[5] with a 4σ (σ = 598 MJy sr⁻¹) threshold.
- Three clumps (I, II and III) are identified to be associated with the cold dust emission.
- Mass of the dust clumps are estimated using the column density map and the equation:
 - $M_{\rm church} = \mu_{\rm H} m_{\rm H} A_{\rm church} \Sigma N({\rm H}_2)$

Assuming the radio emission at 1280 MHz to be optically thin and emanating from a homogeneous, isothermal medium, the Lyman continuum flux required to maintain ionization in the nebula is determined using the following expression [3]:

-39:20:00.0

21:00.0

 $\left[\frac{N_{ly}}{sec^{-1}}\right] = 4.771 \times 10^{42} \left(\frac{S_{\nu}}{Jy}\right) \left(\frac{T_e}{K}\right)^{-0.45} \left(\frac{\nu}{GHz}\right) \left(\frac{D}{pc}\right)^2 \qquad N_{ly} = 5.37 \times 10^{48} \text{ sec}^{-1}$

where, T_e is the electron temperature determined using the Galactic Temperature gradient relation[2]: $T_e = (5780 \pm 350) + (287 \pm 46)R_{Gal}$ $T_e \sim 8200 \text{ K}$

here, R_{Gal} : Galactocentric distance which is 8.5 kpc for the IR bubble S6 [4].

• The ZAMS spectral type of the central ionizing star is estimated to be O7 - O8.5.

Emission from Dust Component

- Cold dust emission sampled in the FIR wavelengths traces the bubble morphology seen in the MIR.
- Dust clumps are seen towards the south-west of the bubble being more prominent as we

where, A_{pixel} : pixel area.					50.0 40.0 30.0 20.0 10.0 17:18:00.0 RA (J2000)		
Clump	$\Sigma N(H_2)$ (×10 ²³ cm ⁻²)	Radius (pc)	Mass (M_{\odot})	Mean T _d (K)	Mean $N(H_2)$ (× 10 ²² cm ⁻²)	No. Density (n_{H_2}) (× 10 ⁴ cm ⁻³)	Figure 5 : 250 µm <i>Herschel</i> map of the region towards S6. The overlaid apertures corresponds to that of three clumps
I	8.1	0.5	338	26.7	1.9	3.9	as determined using the Fellwalker
II	4.9	0.4	203	29.1	1.4	2.6	algorithm. Green contours correspond
III	6.5	0.5	268	30.5	1.7	3.1	to 610 MHz contours.

Table 2 : Physical parameters of the identified dust clumps

Kinematics of the Dust Clumps

- Of the sixteen molecular-line transitions covered in the MALT90 Survey, four (N₂H⁺,HCO⁺, HCN and HNC) are detected towards Clumps I, II, and III.
- N_2H^+ molecular line spectra is used to determine the V_{ISR} of the clumps.
- Clump II displays double-peaked, blue-asymmetric HCO⁺ line profile with self-absorption dip coinciding with the V_{LSR} and peak of optically thin N_2H^+ line. This indicates infall activity.
- Derived mass infall rates are consistent with other high-mass star forming regions.

Clump II

$V_{\inf} = V_{N_2H^+} \cdot$	$-V_{\rm HCO^+} = -13$	8.2 - (-13.9)
$V_{\rm i}$	$_{\rm nf} = -0.7 \; {\rm km}/{\rm m}$	'S

 $\dot{M}_{inf} = 4\pi R^2 V_{inf} \rho = 9.7 \times 10^{-4} M_{\odot}/yr$

Clumps	Ι	II	III
$V_{\rm LSR}$ (km s ⁻¹)	-13.7	-13.2	-12.8
Table 3. V	correspor	ding to each	dust clump

Clump III

Figure 3 : Dust emission associated with the bubble

References

- 1. Tapia M., Persi P., Roth., Elia D., Molinari S., et al. 2014, MNRAS, 437, 606.
- 2. Quireza, C., Rood, R.T., Bania, T.M., Balser, D.S et al. 2006, ApJ, 653(2), p. 1226
- 3. Schmiedeke, A., Schilke, P., Moller, T., Sanchez-Monge, A., et al. 2016, A&A, 588, p.A143
- 4. Roman-Lopes, A. and Abraham, Z., 2006, ApJ, 131(2), p.951
- 5. Berry, D. S. 2015, Astronomy and Computing, 10, 22
- 6. Churchwell, E., Babler, B. L., Meade, M. R., Whitney, B. A., Benjamin, R., et al. 2009, PASP, 121, 213

Figure 6 : HCO⁺ spectra of clumps associated with dust bubble S6. Blue dotted line denotes $V_{\rm LSR}$. The magenta line denotes location of blue shifted peak in Clump II.

Conclusions

Clump

- Ionized emission from the region towards S6 displays cometary morphology.
- The spectral type of the ionizing star is estimated to be O7 O8.5.
- Three clumps are detected using Fellwalker algorithm.
- Using the dust temperature and column density maps, the clumps' physical properties are determined.
- Molecular line spectra of HCO⁺ displays infall activity in clump II. The mass infall rate is calculated to be $9.7 \ge 10^{-4} M_{\odot}/\text{yr}$.