

Luminescent MoS₂ Quantum Dots Dispersed over Nanosheets-**Elucidation of Its Photoluminescence Origin Neema P M and Jobin Cyriac**

Department of Chemistry, Indian Institute of Space Science and Technology, Thiruvananthapuram, Kerala, INDIA – 695 547 Email: neemapm.15@res.iist.ac.in

Abstract

- > Photoluminescent MoS₂ QDs interspersed on MoS₂ nanosheets (MoS₂ QDNS) were synthesized by the hydrothermal reaction of MoS₂ powder and NaOH
- > Transmission electron microscopy (TEM), Atomic force microscopy(AFM) and Raman spectroscopic studies reveal the formation of mono and bilayered sheets of MoS₂ along with QDs with size 2-4 nm
- > Emission from three different region (blue, green and near red) are surmised to be arise from smaller QDs, bigger QDs & smaller sheets and bigger sheets, respectively.

Introduction

- > Transition metal dichalcogenides (TMDs) have been investigated with great attention because of their promising optical, electrical and mechanical properties
- \triangleright Among TMDs, MoS₂ shows photoluminescence (PL) in quantum dots (QDs) or a few layered nanosheets
- \succ In the present study, highly photoluminescent MoS_2 QDs dispersed on MoS_2 nanosheets (MoS₂ QDNS) were synthesized using hydrothermal treatment, which shows excitation dependent emission, that cover a major portion of visible spectra

Characterization

Results and Discussions

Photophysical Studies

Conclusions

- \succ Uniform and monodisperse QDs of size 2- 4 nm over mono or bilayer of MoS₂ sheets are synthesized from commercially available MoS₂ powder via hydrothermal reaction route
- > The MoS₂ QDNS shows high fluorescent emission from blue to near red region
- > Thorough photophysical characterization including lifetime studies demonstrated that higher energy emission corresponds to smaller QDs, medium energy emissions

Reference

1. Neema Pallikkarathodi Mani, Manjunatha Ganiga, Jobin Cyriac; *Chemistry Select, 2017,* (Accepted)

Acknowledgements

Authors acknowledge Indian Institute of Space Science & Technology (IIST) for funding and Amrita Institute of Medical Sciences (AIMS) Cochin, Cochin University of Science &

