

SUCROSE-DERIVED CARBON-GRAPHITE COMPOSITE FOAMS FOR THERMAL ENERGY STORAGE SYSTEMS

Praveen Wilson, Sujith Vijayan, K. Prabhakaran

Department of Chemistry, Indian Institute of Space Science and Technology

Thiruvananthapuram-695547

- **PCM for TES application.**
- Sucrose is used as a carbon precursor forming the matrix of the foam, graphite flakes is used as the conducting filler, NaCl is used as the micro-sized pore generating template and Paraffin wax as the PCM. Studying the effect of compositions of the precursors on the thermal conductivity, PCM loading and enthalpy of composites.

Characterisation of Conducting carbon foams

A green, simple, scalable process to produce carbon foams by hot-pressing molten sucrose-NaCl-graphite mixture in a stainless steel mould

Conducting carbon foams-Paraffin wax composites

Composite carbon foam was placed in a beaker containing molten wax and heated to 120 °C for 15 min. The beaker is then degassed in a vacuum dessicator for 15 min. Foam is removed and allowed to cool to room temperature.

Vacuum impregnation of Paraffin wax in foam

Properties of carbon foams-Paraffin wax composite

Composite carbon foams (a) CCF-90-10-200 (b) CCF-80-20-200 (c) CCF-70-30-200 (d) CCF-60-40-200 (e) CCF-50-50-200

Conclusions

- > Conducting carbon foams with high thermal conductivity were prepared using a simple hot-pressing method
- > Sucrose as carbon precursor, graphite as conducting filler and NaCl particles as sacrificial template were used
- > By varying NaCl concentration and graphite filler loading the porosities (76.1 to 93.4%) and thermal conductivity (0.282 to 5.23Wm⁻¹K⁻¹) were optimised
- > The microcellular foams were impregnated with Paraffn wax using vacuum impregnation technique to create composites
- > The PW/CCF composites exhibited good enthalpy of fusion (77% of wax) at high mass loading of wax, and showed excellent stability during reheating.

Acknowledgement

The Director, IIST DOS SAIF, IIT-Madras LPSC, Thiruvananthapuram

References

1) Chu, S., Cui, Y., Liu, N. Nat. Mater. 2017, 16, 16-22. 2) Kenisarin, M. M. Solar Energy 2014, 107, 553–575. 3) Lin, Y., Jia, Y., Alva, G., Fang, G. Renew Sust Energ Rev. 2018, 82, 2730-2742. 4) Kholmanov, I., Kim, J., Ou, E., Ruoff, R. S., Shi, L. ACS Nano, 2015, 9 (12) 11699–11707.