

Fragmentation channels of naphthalene, azulene and related heterocyclic PAHs under fast proton collision

M.V.Vinitha¹, M.A.Raman², P K Najeeb¹, A.Kala¹, P.Bhatt³, C.P.Safvan³, S.Vig⁴, U.Kadhane¹ ¹Department of Physics, Indian Institute of Space Science and Technology, Trivandrum-695 547, India ²Indian Institute of Science Education and Research, Bhopal-462066, India ³Inter-University Accelerator Centre, Aruna Asif Ali Marg, New Delhi-110067, India ⁴Department of Earth and Space Science, Indian Institute of Space Science and Technology, Trivandrum-695

Motivation

>PAHs under higher impact energies show diverse fragmentation pattern ➤Kinetic energy release in charge separation reactions is connected to state and PES of parent ion >Multiple ionization and subsequent

Ion-ion coincidence plot of C₁₀H₈ isomers

isomerization dynamics of PAHs ➢ Comparison of PAHs and PANHs at higher excitation energies.

Importance of PAHs

- >PAHs and their cations are proposed as carriers of unidentified IR emission bands from ISM
- Ionization balance, energetic and chemical history of ISM can be gained from PAH model
- ➢Well-known class of environmental pollutants

CH_3^+ emission channels of azulene and naphthalene

□ In figure fragment a and b is specific to azulene. i.e quadruply and triply charged fragment of azulene quickly eliminates CH₃⁺ and become stable in microsecond time scale

Kinetic energy release of binary fission channels

20

□ Major dication channels show a clear binary fission and associated statistical decay The lifetimes of the larger dication fragments are of the order of micro second □Most of the charge separation reactions are identical to both molecules. It indicates a common intermediate multiply charged precursor ion formation

Fragmentation and KER of C₉H₇N isomers

• Identical KER spectra is obtained for quinoline and isoquinoline for the two binary channels

- Unlike other channels, HCN⁺ emission has low energy component
- \circ KER distribution of H₂CN⁺ channel and $C_2H_2^+$ emission channel of $C_{10}H_8^{2+}$ are found to be identical

Conclusion

- Similarity in ion-ion coincidence map and KER spectra of different energetic excitation channels of PAH (PANH) isomers suggests fast isomerization in multiply charged ions
- o In contrast to naphthalene certain triply and quadruply charged azulene ion have higher propensity to decay via CH₃⁺ elimination
- \circ Emission of H₂CN⁺ from PANH dication is observed as one of the strongest channels among binary fission, corresponding molecule (amidogen) is a newly detected interstellar molecule

References

[1] Leach, S., J. H. D. Eland, and S. D. Price. J.Phys.Chem,93.22 (1989): 7575-7583. [2] G Reitsma et al 2013 J. Phys. B: At. Mol. Opt. Phys. 46 245201 [3] Ohishi, Masatoshi, et al. The Astrophysical Journal 427, L51-L54 (1994).

- A remarkable similarity is observed between KER spectra of azulene and naphthalene,
- It indicates both molecules have same dication precursors in double product reactions
- KER is measured upto 3.26eV for carbon conserving channels

Intermediate structure (V) formation for dication proposed by Leach et al

