Theoretical Model to Enhance the Hole mobility in Polymer based LED devices <u>Sanu Xavier, ¹ Nirmala R James*1</u> an Institute of Space Science and Technology(IIST), Thiruvananthapuram, India *Corresponding author's E-mail: nirmala@iist.ac.in

INTRODUCTION

Poly(3, 4 – ethylenedioxythiophene)-Polystyrene sulphonate (PEDOT PSS) is widely used as hole transport layer (HTL) in Polymer based LED devices

To Tune the Hole Mobility of PEDOT PSS

Calculate oxidation potential, reduction potential, reorganization energies and carrier mobility

OBJECTIVES

* Investigate the difference in hydrogen bonding in **PEDOT-Water**, PSS- Water, PEDOT⁺ -Water, PSS⁻ - Water/ PEDOT-DMSO, PSS- DMSO/ PEDOT⁺ -DMSO, PSS⁻ - DMSO

Minimize Contact Recombinati

Regulate

			• • • • • • • • • • • • • • • • • • •	
Direction	Charge Transfer coupling	Hopping rate	Mobility	
Forward Transfer	0.065	25682.453	6.40 x cm ² V ⁻¹ s ⁻¹	
Reverse Transfer	9.61 x 10 ⁻⁴	16895.45 x 10 ⁵		

PSSH and **PSS⁻** form strong hydrogen bonds with **DMSO** than water which is evident from intra and inter molecular hydrogen bonding distance

> Due to strong intermolecular hydrogen bonding of PSS - DMSO, the **PSS** chain moves apart from **PEDOT** chain, which is evidenced by **MD** simulation

Figure 1 It is found that carrier mobility in **PEDOT PSS** increased from **1.09** e^{-03} cm²V⁻¹s⁻¹ to 6.40 x cm²V⁻¹s⁻¹ in presence of DMSO

FUTURE □ Investigate the effect of interaction of medium of the HTL and the emissive layer during fabrication of the device

NVT -450K -20NS (DMSO OMITTED)

REFERENCES

- Gangopadhyay, R.; Das, B.; Molla, M. R. How does PEDOT combine with PSS? Insights from structural studies RSC Advances Structural Studies †. **RSC Adv. 2014**
- Synooka, O.; Kretschmer, F.; Hager, M. D.; Himmerlich, M.; Krischok, S.; Gehrig, D.; Schubert, U. S.; Gobsch, G.; Hoppe, H. Modi Fi Cation of the Active Layer / PEDOT : PSS Interface by Solvent Additives Resulting in Improvement of the Performance of Organic Solar Cells. ACS Appl. Mater. Interfaces.2014

Izarra, A. De; Park, S.; Lee, J.; Lansac, Y.; Jang, Y. H. Ionic Liquid Designed for PEDOT : PSS Conductivity Enhancement Ionic Liquid Designed for PEDOT: PSS Conductivity Enhancement. J. Am. Chem. Soc.2018

ACKNOWLEDGEMENT

IIST for funding

NVT -450K -70NS (DMSO OMITTED)