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ABSTRACT 

Image classification is one of the most prominent techniques of analysis for image 

interpretation and information mining tasks. It has been applied in a wide variety of remote 

sensing image-driven applications. The quality and operational-level utility of information 

from remote sensing imagery is primarily influenced by the adaptability of classification 

methods for information mining from imagery in a time-critical manner and with minimal 

human expert’s involvement. The development of efficient image classification algorithms 

is essential to cope-up with the ever-changing and ongoing requirements of real-world 

applications. As a concrete example, advances in remote sensing such as very high-

resolution multispectral images (MSIs) and hyperspectral images (HSIs) have opened up 

and fostered new opportunities in expanding the horizons of mapping applications using 

remotely-sensed imagery. In recent years, the increasing availability of high spatial-

spectral resolution imaging has been evolving as the viable and cost-effective remotely 

sensed data source in various high precision and high accuracy remote sensing applications 

from the land surface and industrial perspectives. The bulk of classification approaches 

available offer good performance for the ideal scenario of having priori comprehensive 

ground truth information on the type, number, and spatial distribution of information 

classes in the imagery. In a realistic environment of imagery acquisition, these 

requirements are rarely met and there is always a demand for more ground truth 

information and hence better training of the classification model. As a result, most of the 

existing techniques are not efficient for the classification tasks under uncertainties such as 

unseen, unknown, and dynamic environments in terms of accuracy, training information 

dependencies, and minimizing computation times in a firm or near real-time environment, 

especially for high dimensionality data like HSIs. 

    The aim of this thesis is the development of efficient and robust image classification 

algorithms based on supervised learning approaches that are suitable for both static and 

dynamic real-time operational environments. To realize this aim, four different strategies, 
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aka objectives, are considered in this study using various MSIs and HSIs of different spatial 

and spectral resolutions to realize the intended objective. First, a field-programmable gate 

array (FPGA) based real-time decision intelligence system architecture is designed using 

low-complexity rapid prototyping tools. Second, a novel classifier is developed that 

maintains stable classification performance in both static and dynamic environments. 

Third, a new category of shadow and illumination invariant image classification algorithms 

is proposed. Besides, a novel mechanism to determine the optimal threshold for the 

proposed version of spectral similarity matching methods (SMMs) is also proposed. 

Finally, a new category of open-set classifiers that combine the advantages of a hardware 

accelerator, i.e., FPGA-based real-time processing and open-set classification is proposed. 

A new classification model architecture is also presented to get the time-critical 

computational benefit of the proposed open-set classifier. A thorough experimental 

evaluation using different MSIs and HSIs, captured from multi-sensor and multi-platform 

modalities, demonstrates the proposed algorithms' practical and robust classification 

performance. The contributions of this thesis, methods, and algorithms for remote sensing 

imagery classification in real-time or near real-time perspective are vital in helping realize 

automatic image analytic workflows in operational stream imagery analyses application. 

 

 

 

 

 

 

 

 

 

 



 

ix 

TABLE OF CONTENTS 

CERTIFICATE                                                                                                                   i 

DECLARATION                                                                                                               iii 

ACKNOWLEDGEMENTS                                                                                                     v 

ABSTRACT                                                                                                                                vii 

LIST OF FIGURES                                                                                                                            xv 

LIST OF TABLES                                                                                                          xix 

ABBREVIATIONS                                                                                                                      xxi 

1. INTRODUCTION......................................................................................................11 

1.1. Spectral Imaging  ....................................................................................................1 

1.1.1. Image processing and analysis techniques ...................................................3 

1.1.2. Applications  ................................................................................................4 

1.1.3. Challenges  ...................................................................................................6 

1.2. Real-world, Real-time Environments .....................................................................7 

1.3. Aim, Motivation, and Objectives ............................................................................9 

1.4. Structure of Thesis ................................................................................................10 

2. THEORETICAL BACKGROUND AND LITERATURE REVIEW ...................13 

2.1. Data Intake Processing .........................................................................................13 

2.2. Supervised Image Classification ...........................................................................14 

2.2.1. Training and classification .........................................................................15 

2.3. Supervised Image Classification Methods ............................................................17 



 

x 

2.3.1. One-class classification methods ...............................................................17 

2.3.2. Similarity matching methods .....................................................................19 

2.3.3. Multi-class classification methods without reject-option ..........................21 

2.3.4. Multi-class classification methods with reject-option  ..............................24 

2.4. Classification Accuracy Assessment ....................................................................26 

2.5. Real-Time Processing ...........................................................................................27 

2.6. FPGA Design Workflow ......................................................................................27 

2.7. Literature Review .................................................................................................28 

2.7.1. Computation perspective ...........................................................................29 

2.7.2. Algorithmic perspective .............................................................................30 

2.8. Summary ...............................................................................................................32 

3. DESIGN AND DEVELOPMENT OF FPGA-BASED REAL-TIME IMAGE 

CLASSIFICATION ...................................................................................................33 

3.1. Introduction ...........................................................................................................33 

3.2. Problem Statement ................................................................................................37 

3.3. Datasets Used ........................................................................................................37 

3.4. Methodology .........................................................................................................40 

3.4.1. Software implementation of MSVM training ............................................40 

3.4.2. Hardware implementation of MSVM classification ..................................41 

3.5. Experimental Results and Discussion ...................................................................47 

3.5.1. MSVM classification accuracy assessment ...............................................47 

3.5.2. Sensitivity analysis of OA .........................................................................49 

3.5.3. Real time performance evaluation of FPGA based MSVM implementation

....................................................................................................................51 

3.6. Chapter Conclusions .............................................................................................53



 

xi 

4. SUPERVISED CASCADED CLASSIFIER SYSTEM (SC2S) FOR OPEN-SET 

IMAGE CLASSIFICATION IN REAL-WORLD ENVIRONMENTS ...............55 

4.1. Introduction ...........................................................................................................55 

4.2. Problem Statement ................................................................................................58 

4.3. Datasets Used ........................................................................................................58 

4.4. Methodology .........................................................................................................61 

4.4.1. Supervised cascaded classifier system (SC2S) ...........................................61 

4.5. Design of Experimental Setup for Various Real-World Classification Case 

Studies...................................................................................................................64 

4.6. Results and Discussion .........................................................................................65 

4.6.1. Performance evaluation of the list of classifiers using case study I ..........66 

4.6.2. Performance evaluation of the list of classifiers using case study II .........68 

4.6.3. Performance evaluation of the list of classifiers using case study III ........69 

4.7. Chapter Conclusions  ............................................................................................73 

5. SHADOW AND ILLUMINATION INVARIANT CLASSIFICATION USING 

MULTISPECTRAL AND HYPERSPECTRAL DATA ........................................75 

5.1. Introduction ...........................................................................................................75 

5.2. Problem Statement ................................................................................................79 

5.3. Datasets Used ........................................................................................................80 

5.4. Methodology .........................................................................................................84 

5.4.1. Proposed SMMs .........................................................................................84 

5.4.2. Proposed SI2CS ..........................................................................................88 

5.5. Experimental Results and Discussion ...................................................................90 

5.5.1. Experimental design of various real-world classification scenarios ..........90 

5.5.2. Evaluation metrics .....................................................................................91 



 

xii 

5.5.3. Results ........................................................................................................91 

5.5.4. Discussion ..................................................................................................98 

5.6. Chapter Conclusions .............................................................................................99 

6. OPEN-SET IMAGE CLASSIFICATION ALGORITHMS FOR REAL-TIME 

ENVIRONMENTS ..................................................................................................101 

6.1. Introduction .........................................................................................................101 

6.2. Problem Statement ..............................................................................................104 

6.3. Datasets Used ......................................................................................................105 

6.4. Methodology .......................................................................................................109 

6.4.1. CAG-SC2S ...............................................................................................110 

6.4.2. Proposed CAL-SC2S ................................................................................112 

6.4.3. Model architectures of CA-SC2S .............................................................114 

6.5. Design of Experimental Setup of Various CSR and OSR Scenarios .................117 

6.6. Results and Analysis ...........................................................................................119 

6.6.1. Performance evaluation of the list of classifiers using case study I ........120 

6.6.2. Performance evaluation of the list of classifiers using case study II  ......121 

6.6.3. Performance evaluation of the list of classifiers using case study III  .....124 

6.6.4. Performance evaluation of the list of classifiers using case study IV  .....126 

6.6.5. FPGA-based hardware design performance evaluation of the list of 

classifiers using case study V  .................................................................129 

6.7. Chapter Conclusions ...........................................................................................131 

7. DISCUSSIONS AND MAJOR CONTRIBUTIONS ............................................133  

7.1. Discussions .........................................................................................................133   



 

xiii 

7.2. Major Contributions of Thesis ............................................................................135  

8. SUMMARY, CONCLUSIONS, AND FUTURE DIRECTIONS ........................137 

8.1. Summary and Conclusions .................................................................................137 

8.2. Recommendations and Future Research Directions ...........................................138 

8.3. Acknowledgments for Data ................................................................................139 

REFERENCES ...............................................................................................................140 

LIST OF PUBLICATIONS, CONFERENCES, AND PATENTS ............................149 

 

 

 



 

 

 

 

 

 

 

 

 

 

 



 

xv 

LIST OF FIGURES 

1.1 The concept of different types of optical imaging platforms and different 

types of images recorded by hyperspectral, multispectral, and RGB 

sensors. The spectral signatures of water and vegetation are also shown to 

compare the differences in the spectral information ............................................ 2 

1.2 Venn diagram to illustrate the advantage of classification technique for 

including the subtle functionalities of discrimination, detection, and 

quantification ....................................................................................................... 4 

1.3 The illustration of an abstract view of closed-set or static environments 

and open-set or dynamic environments. Each environment has four 

partitions: human intervention, computational resource, computation time, 

and data, to show the prime differences .............................................................. 8 

2.1 Illustrating the overview of training stage and classification stage in 

supervised learning approach............................................................................. 14 

2.2 Detailed process of training stage in the supervised learning approach ............ 16 

2.3 One-dimensional deep convolution neural network (1D-CNN) architecture

 ........................................................................................................................... 24 

2.4 Illustration of a general workflow followed to design the FPGA 

architecture......................................................................................................... 28 

3.1 Three-band RGB display of hyperspectral data and their reference maps 

of: (a) Pavia University, (b) AVIRIS-NG, (c) Drone, and (d) Terrestrial. 

For each image, a colored legend is also provided ............................................ 38 

3.2 A schematic block diagram of the proposed classification framework. Note 

that offline training in the host computer and online classification using 

FPGA are shown above and below of horizontal dashed line, respectively ...... 41 

3.3 Top-level architecture of online classification framework. The blue-filled 

box represents host computer for streaming HSIs and receiving labels, the 

FPGA board consists of modules, and the green box represents the 

reconfigurable hardware modules for implementing the MSVM algorithm

 ........................................................................................................................... 42 

3.4 Streaming pipelining architecture of the MSVM algorithm, where P 



 

xvi 

represents the number of BCs. Note that pixel vectors and parameters are 

streamed synchronously from left to right and top to bottom, respectively ...... 43 

3.5 Processing element (PE) structure for 𝑖th BC to compute a decision 

function 𝑓 ........................................................................................................... 45 

3.6 JTAG based HW/SW co-simulation for verifying FPGA-based hardware 

logic ................................................................................................................... 46 

3.7 Training set reference maps for learning and obtained classified images of 

(a) Pavia University, (b) AVIRIS-NG, (c) Drone, and (d) Terrestrial ............... 48 

3.8 (a) OAs of MSVM over different percentages of training dataset size for 

the datasets considered; (b) CVAs obtained in relation to six different 

values of 𝐶 parameters for four different datasets ............................................. 49 

4.1 (a) RGB display of Salinas HSI and its ground truth reference map; (b) 

RGB display of Cubert HSI and its ground truth reference map; (c) RGB 

display of PU HSI and its ground truth reference map; (d) FCC display of 

S2A MSI and its ground truth reference map .................................................... 59 

4.2 (a) Top-level architecture diagram of the proposed pixel-level SC2S 

method for the 𝑖th test pixel vector 𝐳𝑖. (b) Concept diagram of feature space 

ℱ partitioning into decision regions by (Left) SVM, (Middle) OCSVM, 

and (Right) SC2S (OCSVM+SVM) for a 2-KC classification problem ............ 61 

4.3 A detailed illustration of the general workflow of the SC2S algorithmic 

framework and its two sub-stages using a flowchart diagram ........................... 62 

4.4 3D bar plot visualization of obtained mean percentages of (a) FPR and (b) 

FNR results by seven different classification algorithms for eight 

experimental open-set test cases in case study III ............................................. 71 

4.5 Classification maps obtained for specific test case by SVM in (a) and (e); 

(b) and (f) by SC2S (OCSVM+SVM) prediction for full PU image (above) 

and Salinas image (below). A detailed representation of classified maps to 

assess the false-known errors (in red) that are obtained by SVM (c) and 

(g); (d) and (h) by SC2S prediction only for available ground-truth 

reference data ..................................................................................................... 72 

5.1 Illustrating different types of shadows. The feature space plot in the right 

represents the 2-D scatter plot and spectral reflectance curves of the 

vegetation reflectance in the area exposed to light and dark regions where 

illumination from a light source is blocked ....................................................... 76 



 

xvii 

5.2 Three band true color composite images with manually labeled IL and IS 

ground truth samples of the dataset used for the experiments. (a) 

Spaceborne WV-3 MSI. (b) Airborne Cu-D HSI. (c) Terrestrial Harvard 

HSI. (d) Terrestrial Cu-T HSI. (e) Indoor Specim HSI. (f) Terrestrial GS 

HSI ..................................................................................................................... 81 

5.3 Architecture diagram of the proposed pixel-level shadow and illumination 

invariant classification using SI2CS method for the 𝑖th test pixel vector 𝐳𝑖 ....... 88 

5.4 Qualitative assessment of the eight considered classifier predictions on 

WV-3, Cu-D, and Harvard datasets. Visual comparison of classified 

images obtained for the specific test cases of each of the three datasets (top 

to bottom) using the eight classification methods (left to right). The white 

color represents the label prediction for the selected test cases of target KC, 

including IL and IS pixels, and black represents the label for UCs ................... 94 

5.5 Qualitative assessment of the eight considered classifier predictions on Cu-

T, Specim, and GS datasets. Visual comparison of classified images 

obtained for the specific test cases of each of the three datasets (top to 

bottom) using the eight classification methods (left to right). The white 

color represents the label prediction for the selected test cases of target KC, 

including IL and IS pixels, and black represents the label for UCs ................... 95 

5.6 Comparison of KC shadow detection results obtained by different methods 

using the considered datasets. The performance measure is the mean (using 

bar) and SD (using green circular dot) of 𝜂 ....................................................... 96 

5.7 Visualization of the classification errors (in red) obtained for Specim HSI 

using selected classifiers for the specific realization of leaf target KC for 

available ground truth of IL and IS pixel vectors .............................................. 97 

6.1 An illustration of several fundamental steps involved in digital image 

classification. The main emphasis is given to assessing the choice and 

performance of the image analysis scheme to achieve classification or 

recognition tasks independent of application environments ............................ 102 

6.2 An example to show the advantage of global and local decision boundary 

usage by classifiers for a four-class classification problem. The scatter plot 

represents the two-band data distribution of four classes ................................ 103

6.3 (a) RGB image and (b) reference map of WV3 MSI data. (c) RGB image 

and (d) reference map of R18 MSI data. (e) RGB image and (f) reference 

map of ANG HSI data ..................................................................................... 106 



 

xviii 

6.4 (a) RGB image and (b) reference map of CHK HSI data. (c) RGB image 

and (d) reference map of PC HSI data. (e) RGB image and (f) reference 

map of TI HSI data .......................................................................................... 108 

6.5 An illustration of the detailed architecture diagram of the pixel-wise CAG-

S2CS method for the 𝑖𝑡ℎ test pixel vector 𝐳𝒊  ................................................... 110 

6.6 Detailed architecture diagram of the pixel-wise CAL-S2CS method for the 

𝑖𝑡ℎ test pixel vector 𝐳𝒊 ...................................................................................... 112 

6.7 Hardware architectures of the pixel-wise classification models of the CA-

SC2S methods for the 𝑖𝑡ℎ test pixel vector 𝐳𝒊. (a) Type-I CA-SC2S model 

architecture, (b) Type-II CA-SC2S model architecture. (c) DR module 

architecture. (d) The architecture of the PE module. (e) Stage-I G-SNC 

module architecture. (f) The architecture of the RDF module. (g) Stage-I 

L-SNC module architecture, and (h) SVM-based Stage-II SC module 

architecture....................................................................................................... 115 

6.8 3D bar plot visualization of the obtained mean percentages of FNR [(a), 

(c), (e), and (g)] and FPR [(b), (d), (f), and (h)] results by seven classifiers 

for six different test cases in four case studies. The increasing order of case 

studies is shown from top to bottom. The legend for the classifiers and test 

cases is also shown above ................................................................................ 127 

6.9 Classified images produced by the list of classifiers for the specific 

realization of the WV3 dataset. The maps (a) and (b) are produced by 

SVM. (c) and (d) are produced by OSNNNNDR. (e) and (f) are produced by 

CAG-S2CS using SVM as SC. (g) and (h) are produced by CAL-S2CS 

using SVM as SC. The class predictions by the algorithms are performed 

only on the ground truth reference data to show errors produced by the 

classifiers for the UCs ...................................................................................... 128  

 

 



 

xix 

LIST OF TABLES 

3.1 Entries for decision function D and their class labels for a 5-class   

classification problem ........................................................................................ 44 

3.2 Class-wise classification accuracy obtained using proposed FPGA-based 

MSVM implementation ..................................................................................... 49 

3.3 Summary of resource utilization for the proposed FPGA-based 

implementation of the MSVM algorithm .......................................................... 51 

3.4 Real-time performance of the proposed MSVM design for the considered 

hyperspectral imageries ..................................................................................... 52 

4.1 Summary of the list of eight open-set experimental test cases used in case 

study I. Each test case contains a specific set of Training classes or KCs 

and UCs relative to Salinas and PU datasets ..................................................... 65 

4.2 OA (in %) and misclassification rate (in %) results to evaluate the 

prediction performance of conventional SVM and SC2S classifier with 

linear and RBF kernels for the specific open-set test case scenarios in the 

case study I. The best accuracy and error rate in each row are shown in 

bold .................................................................................................................... 67 

4.3 OA (in %) and AA (in %) results were obtained for ten open-set test cases 

by the list of classifiers having without reject-option and with reject-

option. The best accuracies in each row are shown in bold ............................... 68 

4.4 The mean and SD of OA (in %) results in over ten realizations are 

presented for eight open-set scenarios (in case study III) by the list of 

classifiers having without reject-option and with reject-option. The best 

results in each row are shown in bold ................................................................ 69 

4.5 The mean and SD of AA (in %) results in over ten realizations are 

presented for eight open-set scenarios (in case study III) by the list of 

classifiers having without reject-option and with reject-option. The best 

results in each row are shown in bold ................................................................ 70 

5.1 Results for all six datasets and eight classifiers containing traditional and 

shadow invariant methods. The mean and SD of OA (in %), AA (in %), 

FNR (in %), and FPR (in %) are presented for five realizations of each IL 



 

xx 

information class relative to a dataset. The best result for each metric 

relative to a dataset is shown in bold ................................................................. 92 

6.1 OA and AA results obtained by the list of classifiers for the six test cases 

with no UCs in case study I ............................................................................. 122 

6.2 OA and AA results obtained by the list of classifiers for the specific six 

test cases in case study II ................................................................................. 122 

6.3 OA and AA results obtained by the classifiers for the test cases with fixed 

KC set size in case study III............................................................................. 125 

6.4 OA and AA results obtained by the classifiers for the random selection of 

KCs in case study IV ....................................................................................... 125 

6.5 Assessment of the classification accuracies (Top), errors (Top), and real-

time processing (Bottom) results using FPGA obtained by the list of five 

classification techniques for the specific realization of ANG HSI dataset. 

The results are estimated for the considered realization of ANG image with 

river water and lake water as two KCs in case study V ................................... 131 

 

 

 

 

 

 

 

 

 

 



 

xxi 

ABBREVIATIONS 

1D-DCNN One Dimensional Deep Convolutional Neural Network 

2D Two Dimensional 

3D Three Dimensional 

AA Average Accuracy 

ASIC Application Specific Integrated Circuit 

AVIRIS Airborne Visible Infrared Imaging Spectrometer 

AVIRIS-NG Airborne Visible Infrared Imaging Spectrometer Next Generation 

BC Binary Classifier 

BIL Band Interleaved by Line 

BIP Band Interleaved by Pixel 

BIP Band Interleaved by Pixel 

BSQ Band SeQuential 

CA Class Aware 

CAG-SC2S Class Aware Global Supervised Cascaded Classifier System 

CAG-SC2S-I Class Aware Global Supervised Cascaded Classifier System Type-I 

CAG-SC2S-II Class Aware Global Supervised Cascaded Classifier System Type-II 

CAL-SC2S Class Aware Local Supervised Cascaded Classifier System 

CAL-SC2S-I Class Aware Local Supervised Cascaded Classifier System Type-I 

CAL-SC2S-II Class Aware Local Supervised Cascaded Classifier System Type-II 

CNN Convolution Neural Network 

CVA Cross Validation Accuracy 

DCNN Deep Convolutional Neural Network  

DFE Data Flow Engine 

DL Deep Learning 

DSP Digital Signal Processing 

ELM Extreme Learning Machine 

FCC False Color Composite 

FPGA Field Programmable Gate Array 



 

xxii 

GPU Graphics Processing Unit 

G-SNC Global Supervised Novelty Classifier 

HDL Hardware Description Language 

HPC High Performance Computing 

HSI HyperSpectral Image 

HW HardWare 

ID In Distribution 

IL In Light 

IP Intellectual Property 

IS In Shadow 

JTAG Joint Test Action Group 

KC Known Class 

k-NN k Nearest Neighbor 

L-SNC Local Supervised Novelty Classifier 

LULC Land Use and Land Cover 

LUT Look Up Table 

MAP Maximum A Posterior 

MCC Multi Class Classification 

MSI MultiSpectral Image 

MSVM Multi-class Support Vector Machine 

NN Neural Network 

NNDR Nearest Neighbor Distance Ratio 

OA Overall Accuracy 

OAA One-Against-All 

OAO One-Against-One 

OCC One-Class Classification 

OCSVM One-Class Support Vector Machines 

OoD Out of Distribution 

OSNN Open-Set Nearest Neighbor 

OSNNCV Open-Set Nearest Neighbor Class Verification 

OSNNNNDR Open-Set Nearest Neighbor Nearest Neighbors distance ratio 



 

xxiii 

OVO One-Versus-One 

PA Producer’s Accuracy 

PCI Peripheral Component Interconnect  

PDF Probability Distribution Function 

PE Processing Element 

PSoC Programmable System on Chip 

P-SVM Platt probability estimation-based Support Vector Machine 

QP Quadratic Programming 

RAM Random Access Memory 

RF Random Forest 

RGB Red, Green, and Blue 

ROM Read Only Memory 

RSC Rule-based Supervised Classifier 

SAM Spectral Angle Mapper 

SC Supervised Classifier 

SC2S Supervised Cascaded Classifier system 

SCM Spectral Correlation Mapper 

SD Standard Deviation 

SI2CS Shadow and Illumination Invariant Classifier System 

SID Spectral Information Divergence 

SMM Similarity Matching Method 

SNC Supervised Novelty Classifier 

SV Support Vector 

SVM Support Vector Machines 

SW SoftWare 

SWIL Sea, Water, Ice, and Land 

UART Universal Asynchronous Receiver Transmitter 

UC Unknown Class 

USB Universal Serial Bus 

VA Validation Accuracy 

VHDL Very High-Speed Integrated Circuit Hardware Description Language 

XSG Xilinx System Generator 



 

 

 

 

 

 

 

 

 

 

 



 

1 

 

CHAPTER 1 

INTRODUCTION 

1.1 Spectral Imaging 

Optical images are the prime sources of information in remote sensing data analysis. Since 

their inception, they have played a vital role in the success of various information mining 

and image interpretation tasks since their inception (Prasad, Bruce and Chanussot, 2011). 

Contemporary examples include, but are not limited to, mapping (or classification) and 

monitoring applications of land use/land cover (LULC) change (Jun and Ghosh, 2013), 

health care (Halicek et al., 2017), weather and climate forecasts (Piñeros, Ritchie and Tyo, 

2011), and Planetary exploration missions (Clark et al., 2003). Imaging systems use 

sensors, which are sensitive to one or more wavelengths of an electromagnetic spectrum, 

to capture images for the visual representation of an area. Depending on the imaging 

techniques used, the visual representation and structure of an image can take many forms 

to convey different levels of information of the desired scanning scene based on the surface 

reflectance, as shown in Figure 1.1. Some optical imaging techniques used in modern times 

include panchromatic imaging, red, green, and blue (RGB) imaging, spectral imaging, 

thermal imaging, etc. Spectral imaging remote sensing combines two technologies, namely 

imaging and spectroscopy. Spectral imaging for remote sensing can be divided into two 

main techniques based on the continuity of the data stored in the wavelength domain, 

multispectral imaging and hyperspectral imaging (Eismann, 2012). 

    In the past few years, spectral imaging systems have gained significant attention from 

researchers across various scientific and engineering disciplines (Bioucas-Dias et al., 

2013). Unlike traditional panchromatic and RGB imaging systems, spectral imaging 

systems use specialized sensors operating primarily from the visible through infrared 
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wavelength ranges to acquire images with more than three spectral bands (see Figure 1.1) 

(Khan et al., 2018). Spectral imaging is the technique of producing images, such as 

multispectral images (MSIs) and hyperspectral images (HSIs), containing both spatial and 

spectral domain information of scanning area on the surface of the earth based on surface 

reflectance. Both MSIs and HSIs are three-dimensional data structures having two spatial 

dimensions and one spectral dimension. The main difference between MSI and HSI is in 

the usage of the sampling technique, the bandwidth of each spectral channel, and the 

number of bands (Eismann, 2012). That is to say, multispectral remote sensing collects 

MSI data that have several bands each sampled at discrete, often discontinuous, 

wavelengths with wider spectral bandwidths, i.e., low spectral resolution. While 

hyperspectral remote sensing collects HSI data having spectral bands, each sampled at 

contiguous wavelengths with narrow bandwidths (typically in 10nm or less), i.e., high 

spectral resolution (Prasad, Bruce and Chanussot, 2011). 

    In contrast to grayscale and color images, MSIs and HSIs provide the benefit of 

analyzing images in a pixel-by-pixel fashion accurately using spectral information alone 

(Chang, 2003). This benefit is due to the increasing order of pixel-wise spectral information 

from panchromatic, RBG, MSI, and HSI, as shown in Figure 1.1 (Khan et al., 2018). 

 

 

Figure 1.1: The concept of different types of optical imaging platforms, 

different types of images recorded by hyperspectral, multispectral, 

and RGB sensors. The spectral signatures of water and vegetation 

are also shown to compare the difference in the spectral 

information. 
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Thanks to the inherent high spectral information present in HSIs, accurate discrimination 

of materials is possible compared with MSIs. However, each imaging mode has its own 

advantages and disadvantages based on selected image analysis techniques and 

applications.  

1.1.1 Image processing and analysis techniques 

In optical remote sensing, imaging systems use passive sensors to record the incoming 

radiation in its instantaneous field of view for every given pixel includes not only the 

reflected or emitted radiation but also the scattered radiation. Compared to terrestrial or 

ground-based imaging, airborne and satellite imaging are mainly influenced by 

atmospheric scattering and thus, the images recorded using these platforms require 

calibration and correction processes to remove the effects of the atmosphere. So, this is one 

of the required preprocessing steps to reconstruct the surface reflectance values. After 

calibration and correction for sensor, atmosphere, and topographic effects, these 

preprocessed remotely sensed images can then be used for image processing and analysis 

tasks (Eismann, 2012).  

    A typical objective of MSI/HSI processing and analysis in different fields of application 

includes one or more of the techniques such as dimensionality reduction, target detection, 

and classification (Chang, 2003; Dubacharla and Nidamanuri, 2020). Dimensionality 

reduction refers to the process of reducing the number of attributes or features either by 

using feature selection or by feature extraction methods (Damodaran and Nidamanuri, 

2014). Target detection refers to the process of identifying a target object from the 

background of the observed scene of the study (Bernabe et al., 2011). Classification is a 

process of labeling every pixel or an object in an image using either a supervised or 

unsupervised approach. Among the image processing and analysis techniques, 

classification is one of the prominent techniques of analysis to mine the information present 

in images and a particularly active and vibrant area of research in remote sensing (Ghamisi 

et al., 2017). This prominence is because the classification technique helps transform the 

large volumes of remotely sensed image data into useful information with multiple usages. 
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Classification also includes subtle functionalities of detection, discrimination, 

identification, and quantification, as shown in Figure 1.2 (Chang, 2003). There are three 

different categories of classification approaches: pixel-level classification, object-level 

classification, and sub-pixel classification or unmixing (Bioucas-Dias et al., 2013). The 

choice of approach depends mainly on the application requirement since they offer both 

advantages and limitations. 

1.1.2 Applications 

In the past, the challenge with remote sensing imagery was that data was costly, having 

low or medium resolutions, and simply not frequent enough to perform timely image 

analysis, especially with satellite imagery. The current generation of remote sensors is of 

very high and ultra-high spatial, spectral resolution imaging sensors with low operational 

costs and high revisit rates. These advancements have not only played a crucial role in 

achieving success in a wide variety of remote sensing applications but also have enabled 

the exploration of new applications (Behmann et al., 2018). 

 
 

Figure 1.2: Venn diagram to illustrate the advantage of classification 

technique for including the subtle functionalities of 

discrimination, detection, and quantification. 
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For decades, spectral imagers have been crucial components of remote sensing and 

have significant footprints in the area of life sciences. The number of remote sensing 

applications using MSIs and HSIs continues to grow across various fields. The following 

are some examples of the applications where remotely sensed MSIs and HSIs are 

progressively used. 

• Environmental monitoring and management: MSIs and HSIs can be used to study 

the nature of the environment and track changes over time. For instance, they are 

used to map and monitor coastal and marine environments (Salem and Kafatos, 

2001), air pollution, water quality, LULC classes, forest management, urban human 

settlements, alpine snow properties, and detection of hazardous materials (Dalponte 

et al., 2009). 

• Geology and mineralogy: Since the introduction of MSIs and HSIs, geologists have 

been using the data for lithology, mapping various mineral resources and ore 

deposits (Clark et al., 2003; Adep et al., 2017). 

• Precision agriculture: MSIs and HSIs are very effective tools for monitoring crop 

health and evaluating soil productivity for site-specific applications of inputs 

tailored to the needs of the crop, such as water, pesticides, and fertilizers. They also 

help to detect pathogens and pests associated with crop production, such as weeds, 

insects, and diseases (Thenkabail and Lyon, 2016; Saari et al., 2017). 

• Health care: Hyperspectral imaging has been recently used in health care to 

conduct non-invasive scans of exact areas of skin to detect diseased or malignant 

cells for expedited diagnosis even intraoperatively and rapid treatment of the exact 

regions affected (Madroñal et al., 2017; Khan et al., 2018). 

• Military, defense, and homeland security: MSIs and HSIs can be used for tactical 

reconnaissance, counter-countermeasure for detection, tracking, and classification 

of targets, including targets in varying degrees of hiding and camouflage 

(Manolakis, Marden and Shaw, 2003; Makki et al., 2017).  

• Industrial: MSIs and HSIs can be used for automated quality inspection, 

manufacturing process control, and monitoring in various industrial sectors like 
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food processing, pharmaceutical, and sorting products (Gowen et al., 2007; Sun, 

2010). 

    Including the aforementioned applications, and many remote sensing applications 

benefit from using HSIs because they help to provide accurate detection and classification 

of materials relative to the use of MSIs (wider bandwidths). This benefit is due to the ability 

of HSIs to have subtle differences in signal along a continuous spectrum. However, some 

fixed or static environment applications require only a significant portion of the 

electromagnetic spectrum for analysis, and a band selective capturing technique such as 

multispectral imaging can be very well suitable. In such cases, hyperspectral imaging can 

be used as a reference for the initial evaluation of bands and later can make selective band 

capturing (custom made) for specific applications. This will also reduce the time for image 

capturing, processing, and analysis of the HSIs for high-end, high-precision applications. 

1.1.3 Challenges 

The evolution of very high-resolution MSIs and HSIs has proved to be particularly 

advantageous for most remote sensing image interpretation tasks. But there are challenges 

associated with the use of MSIs and HSIs for transforming the rich spectral data into 

information for applications. The most common limiting factors known to increase the risk 

in analyzing MSIs and HSIs are briefly mentioned below. 

• Class separability: Due to the low spectral resolution, the separability of classes of 

interest (say within classes and between classes) is limited with MSIs. Whereas 

with HSIs, class separability is largely owing to the high spectral resolution. 

However, the increase in the dimensionality of the data increases the possibility of 

problems with the curse of dimensionality. 

• Limited labeled samples: In practice, it is difficult or not possible to collect 

complete information about the training samples of classes of interest. Only a 

limited number of labeled samples of classes of interest are only available at hand 

before training. 
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• Uncertainties: Due to the stochastic nature of landscapes, there are different types 

of uncertainties ranging from image acquisition to image processing and analysis, 

including training and classification.  Some of the uncertainties are sensor noise, 

limited training knowledge of classes of interest referred to as known classes (KCs), 

incomplete knowledge about the actual number of classes in the imagery, i.e., 

presence of unknown classes (UCs), which are unknown or unseen during training. 

These uncertainties are one of the significant factors responsible for omission and 

commission errors (Dubacharla and Nidamanuri, 2020). 

• Computation time: Time-critical and real-time applications such as target 

detection, diurnal change detection, industrial quality inspection require real or near 

real-time computation solutions and classification frameworks (Bernabe et al., 

2011). In particular, there are a plethora of applications, which bank upon MSIs 

and HSIs, needing real-time processing systems for image analysis.  

    The abovementioned complexities and challenges in using these images can slow 

adoption in some applications. Therefore, the development of novel algorithms is needed 

to exploit the full latent potential of spectral information present in MSIs and HSIs. 

1.2 Real-world, Real-time Environments 

Till now, the discussion was focused on the challenges faced in the usage of HSIs and 

MSIs. But we also need to consider the computation challenges and complexities 

associated with algorithms when deployed in real-world, real-time application 

environments (González et al., 2013; Dubacharla and Nidamanuri, 2020). A real-world 

environment can be defined as an operational environment where practical or actual 

instances exist, unlike simulated or laboratory settings. A real-time environment can be 

defined as an application environment where a strictly limited time frame is assigned to 

process the current inputs before it disappears or a new one arrives. For example, the 

airborne visible infrared imaging spectrometer (AVIRIS) instrument data rate is around 

20.4 Mbps with a real-time specification of 131.7 𝜇𝑠 for processing each pixel vector of 

length 224 bands with 12-bit encoding. Then an image analysis system, say performing 
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classification, is said to the real-time system if it processes each pixel vector in less than 

131.7 𝜇𝑠. As another example, the next-generation sensor of AVIRIS, i.e., AVIRIS-NG, 

has a real-time constraint of 15.6 𝜇𝑠 for every pixel vector of 427 channels with 16-bit 

encoding (Basterretxea et al., 2016; Dubacharla and Nidamanuri, 2020). 

    In this section, the focus will be directed towards the critical challenges faced from an 

algorithmic and application environment perspective. In general, the final objective of any 

research is to deploy the developed system or method in real-time environments and 

operate in accordance with the specifications for the specified application. As mentioned 

earlier, the real-time environment is the term used to describe the application environment 

which hosts the system or algorithm during various stages of its life cycle. Based on the 

rate of data change in the test site, an application environment can be grouped into one of 

two main disjoint categories, namely static environment and dynamic environment (Chang, 

2016), as shown in Figure 1.3.  

    An environment is considered static or fixed if the nature of information classes in the 

scene observed is repeatable or does not change over time, and there are no constraints of 

 

 

Figure 1.3: The illustration of an abstract view of closed-set or static 

environments and open-set or dynamic environments. Each 

environment has four partitions: human intervention, 

computational resource, computation time, and data, to show the 

prime differences. 
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turnaround time for image analysis (see Figure 1.3). Whereas in dynamic or non-stationary 

environments, the nature of information classes may change rapidly over time, and there is 

a short turnaround time available to process the current data before new changes come into 

effect (see Figure 1.3). These short turnaround times for processing the inputs are referred 

to as timing constraints and are application-specific. In addition to the timing constraints, 

one also has to deal with uncertainties present in dynamic environments. For instance, 

uncertainties in MSI/HSI classification tasks include noise, incomplete prior knowledge 

about the information classes and spectral classes, etc. A real-world application 

environment is often dynamic in nature and sometimes a combination of both static and 

dynamic settings. Therefore, algorithms capable of producing deterministic outputs with 

low-latency performance are essential for demanding real-time applications operating in 

real-world, real-time environments.  

    Due to the stochastic nature of real-time environments, apart from image processing and 

analysis in real-time or near-real time constraints, various types of uncertainties exist at 

different stages that may affect performance. Examples of uncertainties in real-world, real-

time environments include open-set problems, shadows, and illumination effects, etc. 

1.3 Aim, Motivation, and Objectives 

This thesis aims to design robust techniques for image classification of MSIs/HSIs that 

minimizes runtime and training data dependence to offer stable performance in real-time 

environments. To satisfy the ever-changing application requirements in a highly variable 

environment, the development of efficient and robust classification algorithms is crucial. 

This reason has motivated us to define the scope of our research, and we set our goal to 

develop necessary MSI/HSI analysis and pattern recognition techniques for setting up a 

low-cost, portable custom-made processing system for enabling real-time operational 

image analysis. 

A series of four specific objectives, listed below, is proposed to systematically develop 

image classification algorithms for real-time and operational environments. 



 

10 

 

1. To design and develop a scalable FPGA-based architecture for real-time classification 

using hyperspectral imagery. 

2. To develop a new generic algorithmic framework for addressing the open-set 

classification problems associated with the remote sensing image analysis in 

operational application environments.  

3. To construct a novel algorithmic scheme for mitigating shadow-related classification 

problems associated with the remote sensing image analysis in operational 

environments. 

4.  To realize the real-time processing of open-set image classification for multi-

resolution remote sensing imagery. 

1.4 Structure of Thesis 

The remainder of this thesis is organized in such a way that the specific objectives listed 

above are presented in different chapters. Each chapter is made self-contained and includes 

an introduction, research problem statement, data used, methodology, results and analysis, 

discussion, and conclusions. 

• Chapter 2 presents a brief background knowledge of the data intake procedure for 

MSI/HSI classification tasks, real-time processing, and different classification 

techniques used in later chapters. This chapter also provides an extensive and 

systematic survey of the literature on the existing image classification methods 

from algorithmic and computational perspectives and discusses the problems and 

current solutions. 

• Chapter 3 proposes a new low-complexity design approach for realizing real-time 

HSI classification using FPGA as a hardware accelerator. The proposed 

computationally efficient FPGA design and implementation of HSI classification 

were evaluated in terms of classification accuracy, throughput, latency, 

computation time, and power usage. Experiments were carried out on four different 

multi-sensor and platform HSIs with changing dimensionality and real-time 

constraints. 
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• Chapter 4 presents a novel supervised image classification technique specifically 

proposed to provide stable and robust performance even in the presence of UCs in 

any given application environment. Assessment using exclusively designed case 

studies comprising various classification scenarios of closed-set and open-set 

problems is done to test the stability and robustness of classifiers. The case studies 

are created using four different remote sensing imageries with different LULC 

settings. The classification performance of the proposed method was compared 

against other state-of-the-art closed-set and open-set methods using several 

accuracy metrics and thematic maps.  

• Chapter 5 introduces a set of new shadow and illumination invariant classification 

algorithms using a supervised approach. The proposed algorithms use spectral 

information from MSIs/HSIs to perform class predictions even in the presence of 

shadows and varying illumination conditions. Experiments were carried on 

different classification scenarios of varying shadow and illumination complexities 

designed using six different MSI and HSIs. Further, a comprehensive analysis of 

the obtained classification results of the methods considered in this experiment is 

also presented in this chapter. 

• Chapter 6 presents and discusses a set of novel supervised classification approaches 

for real-time environments using different MSIs and HSIs. The computational 

efficiency of the proposed algorithms was demonstrated using software and FPGA-

based hardware design implementation. In this study, SVM and deep convolutional 

neural networks (DCNN) were used as supervised classifiers in the second stage of 

the proposed methods. A comprehensive evaluation of the methods was performed 

using three different case studies of various classification scenarios of open-set and 

closed-set settings. And a detailed analysis of the results obtained in both software 

and hardware implementation is presented in this chapter. 

• Chapter 7 provides a comprehensive discussion on the overall research findings of 

the studies conducted in the previous chapters and provides a detailed summary of 

the main contributions of this thesis to the community. 
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• Chapter 8 presents a summary of the overall conclusions of the previous chapters, 

recommendations and future directions of this thesis, and acknowledgments for the 

multispectral and hyperspectral data. 
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CHAPTER 2 

THEORETICAL BACKGROUND AND LITERATURE 

REVIEW 

Prelude: In this chapter, the theoretical background and mathematical foundation of data 

intake processing, supervised classification methods, real-time processing, and FPGA 

design of MSIs/HSIs for pattern recognition and image classification tasks, which are used 

in the later chapters of this thesis, are briefly described. It also includes a fairly detailed 

description of the stages involved in performing the supervised learning approaches for 

image classification, such as model training and classification. Further, a comprehensive 

review of the related works on the various aspects of existing methods in the literature to 

solve the stated objectives are presented. 

2.1 Data Intake Processing 

In this thesis, we consider HSIs and MSIs as the choice of input remote sensing imagery 

data for image classification tasks. Notationally, let us consider a 3D MSI/HSI data cube 

denoted by 𝐗 ∈ ℝ𝑚×𝑛×𝑑 has 𝑚 rows or lines, 𝑛 columns or samples, and   spectral bands 

or dimensionality. For convenience, the 3D data cube 𝐗 of size 𝑚 × 𝑛 ×   can be written 

into a 2D  × 𝑁 (where 𝑁 =  𝑚 × 𝑛) matrix form, say 𝑿 ∈ ℝ𝑑×𝑁, known as data matrix 

as shown in Equation (2.1) (Eismann, 2012). The data matrix 𝑿, is typically defined as the 

rastered ordering of 𝑁 column pixel vectors 𝐱𝑖 ∈ ℝ𝑑, such that  𝑿 = [𝐱  𝐱  𝐱𝑁] ∈ ℝ𝑑×𝑁. 

Where each pixel vector 𝐱𝑖, see Equation (2.2), represents a spectral measurement and 𝑁 

is the total number of pixel vectors, i.e., 𝑁 is product of 𝑚 and 𝑛. 

𝑿 = [𝐱1 𝐱2  𝐱𝑁]𝑑×𝑁 = [

𝑥11

𝑥12

⋮
𝑥1𝑑
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𝑥22

⋮
𝑥2𝑑
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= [
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𝐱𝑖 = [

𝑥𝑖1

𝑥𝑖2

⋮
𝑥𝑖𝑑

]

𝑑× 

∈ ℝ𝑑 

 

(2.2) 

    For a pixel-by-pixel-based image analysis, each   dimensional pixel vector is given as 

input to the algorithm as one-by-one in a streaming fashion. For instance, assume that the 

MSI/HSI arrives in a pixel-by-pixel manner from a data matrix or in band-interleaved-by-

pixel (BIP) format from a sensor. As a result, a pixel vector-based analysis can be 

performed. In other two image data formats, such as band-interleaved-by-line (BIL) and 

band sequential (BSQ), the 3D data cube is transformed to a 2D data matrix and then 

streamed pixel-wise to the classification algorithm. 

2.2 Supervised Image Classification 

Supervised learning is one of the most widely researched approaches in the image 

classification domain. This is because of its ability to provide accurate predictions for a 

given training set. In supervised classification, the user or image analyst offers a 

representative set of labeled training samples containing class-specific information for 

learning the classification model (Ghamisi et al., 2017). The process of learning a 

classification model is known as model training or simply training. Then, the trained 

classification model is used for class predictions. The key idea in supervised classification 

can be summarized as the task of learning a mapping function 𝑓 that maps inputs, say 𝐱, to 

a unique label from a prefixed set of discrete outputs labels, categories or target, say 𝑦. 

 

 

Figure 2.1: Illustrating the overview of training stage and classification stage 

in supervised learning approach. 
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Mathematically, we can express the supervised classification as 𝑓: 𝐱 → 𝑦 or 𝑦 = 𝑓 𝐱  as 

shown in Figure 2.1.  

    Based on the assumptions made on the mapping function, supervised learning 

approaches can be split into parametric and non-parametric. The parametric techniques are 

more suited for classification tasks with few training inputs that have lower dimensions. 

So, parametric approaches would be inefficient compared to non-parametric approaches 

for performing supervised MSI/HSI classification tasks. Unlike parametric methods, non-

parametric methods do not make any assumptions about the mapping function and are free 

to learn any functional form from the training set (Duda and Hart, 1973). Some of the 

popular non-parametric methods from the machine learning paradigm are neural networks 

(NNs), support vector machines (SVMs), random forests (RFs), deep learning (DL), etc. 

As shown in Figure 2.1, there are generally two phases or stages involved in using any 

supervised classification technique, namely the training phase and the classification phase 

(Dubacharla and Nidamanuri, 2020). A brief about the two phases in supervised image 

classification is given as follows. 

2.2.1 Training and classification 

In the training stage of the supervised learning process, a discriminant function 𝑓 is 

formulated using a training set   consisting of 𝑙 labeled pixel vectors, i.e.,  = { 𝐱𝑖 𝑦𝑖 }𝑖  
𝑙  

with training samples  𝐱𝑖 ∈ ℝ𝑑 , and the corresponding class labels  𝑦𝑖 ∈ ℝ𝑙  as shown in 

Figure 2.1. To produce a generalized supervised classification model 𝑓 using  , a grid 

search method with a cross-validation (CV) strategy is adopted to find the optimal values 

of model parameters and free parameters.  During training, an algorithm-specific free 

parameter  𝐟 = {𝜃𝑓1
′  𝜃𝑓2

′    𝜃𝑓𝑖
′ } are given as input to the training model to produce 

optimal model parameters   = {𝜃𝑚1
′  𝜃𝑚2

′    𝜃𝑚𝑗
′ } to make the model fit the data. The 

model parameters are used to define the 𝑓 and are dependent on free parameters. Based on 

the nature of each free parameter, the supervisor assigns a fixed range of values or defines 

the parameter space for each free parameter. The available labeled reference training data 
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  is first split into three different sample subsets, namely train set  say  ′ ⊆  ), validation  

set  say  ′′ ⊆  ), and test  say  ′′′ ⊆  ) as shown in Figure 2.2 (Dubacharla and 

Nidamanuri, 2020). In this thesis, the splitting or sampling procedure of reference data   

is performed in two steps. First,   is split into two folds of sample data using the hold-out 

method, i.e.,  ⊥ and   ′′′. Second, the sample  ⊥ is again partitioned into two groups, i.e., 

 ′ and  ′′ of 𝐾-folds using 𝐾-fold technique for CV. For each unique combination of input 

free parameter values out of  𝐿 total combinations, a model trained using one of 𝐾-fold 

sample  ′. Then, an unbiased evaluation of the trained model is performed using  ′′ to 

provide validation accuracy (VA) score, and the value is preserved for future reference. 

This process is repeated for 𝐾 times to produce 𝐾 trained classification models and VA 

scores. Then for each of 𝐿, a 𝐾-fold cross VA (CVA) is calculated using 

CVA𝐿 = 𝑚𝑒𝑎𝑛{[𝑉𝐴𝑐𝑣]𝑐𝑣  
𝐾 } (2.3) 

The optimal combination of best free parameters is selected for the highest CVA or best 

CVA from 𝐿 CVA values. Till now, the procedure is done for tuning or configure the 

optimal free parameters. Next, a final model fit on the dataset  ⊥ and the tuned free 

 

 
 

Figure 2.2: Detailed process of training stage in supervised learning approach. 
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parameters. Finally, the unseen sample of test data  ′′′ is used to provide an unbiased 

evaluation of the final model in terms of test accuracy. The above-described training and 

testing procedures for a given supervised algorithm are also illustrated in Figure 2.2. In the 

second phase of the supervised approach, the trained classification model (i.e., 𝑓 𝐱 𝜽𝒎 ) 

is used for class prediction on test pixel vectors as shown in Figure 2.2. 

2.3 Supervised Image Classification Methods 

A brief description of different types of supervised image classification techniques which 

are used in this thesis is provided as follows. 

2.3.1 One-class classification (OCC) methods 

Unlike binary classification, OCC builds a classification model by learning from a training 

dataset containing only the samples from one class, i.e., the target class. The objective of a 

trained OCC model is to label the test samples as either the target or the outlier class 

(Mũnoz-Marí et al., 2010). For a given test pixel vector 𝐳, the output of trained OCC model 

𝑓𝑂𝐶𝐶 𝐳  m ∈ {−  + } where −  represents a non-target class label and +  represents a 

target class label. Other multiple names in use for target class in OCC include positive 

class, normal class, inliers, in-distribution (ID), and KC. In the case of non-target class, the 

multiple identities include negative class, abnormal class, outliers, out-of-distribution 

(OoD), and UC. The supervised OCC methods consist of one-class SVM (OCSVM) and 

support vector data description (SVDD). 

2.3.1.1 One-class support vector machine (OCSVM)  

OCSVM is one of the widely used supervised OCC techniques to characterize a single 

class that is well described by the training dataset containing only the target class examples 

(Schölkopf et al., 2000). It is also commonly used for anomaly or novelty detection tasks 

to identify the abnormal or outlier events that fail to match the target description. The 

OCSVM is a particular form of the conventional binary class SVM, where an optimal 

hyperplane with maximum margin is built between the target samples and the origin 
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(Mũnoz-Marí et al., 2010). In OCSVM training, the origin is considered as the only 

available non-target sample. Similar to SVM, a hyperplane is determined by a small set of 

training samples called support vectors and non-zero slack variables 𝜉𝑖 are introduced to 

allow few margin errors in the training set. The objective function of the OCSVM classifier 

is the following minimization problem 

min
𝐰 𝜌 𝜉

(
 

 
‖𝐰‖ +

 

𝜈𝑛
∑𝜉𝑖
𝑖

− 𝜌) 

                                 subject to     𝐰𝑇𝜙 𝐱𝑖 ≥ 𝜌 − 𝜉𝑖 ∀𝑖 =     𝑛 

                                                      𝜉𝑖 ≥ 0 

 

(2.4) 

    where 𝐰 is the normal vector of the hyperplane, 𝜌 is the bias, 𝜈 ∈  0  ] is a 

hyperparameter that decides the upper bound on the fraction of outliers in  , 𝐱𝑖 are the data 

points, and 𝜙    is a transformation function from the input space to the feature space ℱ. 

The above minimization problem can be solved using Lagrange multipliers 𝛼𝑖 > 0 as a 

dual optimization leading to quadratic programming (QP) solution. Then the decision on 

the test sample 𝐳 = [𝑧    𝑧𝑑]
𝑇 ∈ ℝ𝑑 is evaluated using the OCSVM discriminant 

function 𝑓𝑂𝑆 as 

 𝑓OC 𝐳  m ≡ 𝑓OS 𝐳 𝐱
† α 𝜌 = sign((∑𝛼𝑖𝐾(𝐱𝑖

† 𝐳)

K

𝑖  

) − 𝜌)   

 

(2.5) 

𝐾 𝐱 𝐳 = 𝜙 𝐱 𝑇𝜙 𝐳 = 𝐱𝑇𝐳 (2.6) 

𝐾 𝐱 𝐳 = 𝜙 𝐱 𝑇𝜙 𝐳 = exp −γ‖𝐱 − 𝐳‖   (2.7) 

    where K denotes the number of support vectors, 𝐱𝑖
†
 denotes the support vectors, γ is the 

width of the Gaussian curve, and the kernel function 𝐾 is defined by 𝐾 𝐱 𝐳 = 𝜙 𝐱 𝑇𝜙 𝐳  

which is referred to as the dot product in the feature space. 

2.3.1.2 Support vector data description (SVDD)  

SVDD is another particular variant of conventional two-class SVM aiming to formulate an 

optimal hypersphere by primarily learning from   containing only target data. The samples 

within the hypersphere are examples of the target, the non-target samples are outside of it 
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(Tax and Duin, 1999; Khazai et al., 2012).  The model of SVDD can be formulated by 

solving the following optimization problem: 

min
𝑅 𝜉 𝐚

(𝑅 + 𝐶 ∑𝜉𝑖
𝑖

) 

                                 subject to   ‖𝜙 𝐱𝑖 − 𝐚‖ ≤ 𝑅 + 𝜉𝑖1  ∀𝑖 =     𝑛                                                  

                                                   𝜉𝑖 ≥ 0 

 

(2.8) 

After solving the above minimization problem through 𝛼𝑖, an unknown test pixel vector 𝐳 

can be predicted using the SVDD decision function 𝑓𝑆𝐷 of the following form 

𝑓𝑂𝐶 𝐳    ≡ 𝑓𝑆𝐷 𝐳 𝐱
† 𝛼 𝑅 𝐚 = 𝑠𝑖𝑔𝑛 𝑅 − ‖𝜙 𝐳 − 𝐚‖  

= 𝑠𝑖𝑔𝑛 (𝑅 − 𝐾 𝐳 𝐳  +  ∑𝛼𝑖𝐾(𝐳 𝐱𝑖
†)

K

𝑖  

− ∑∑𝛼𝑖𝛼𝑗𝐾(𝐱𝑖
† 𝐱𝑗

†)

K

𝑗  

K

𝑖  

) 

 

 

(2.9) 

Where 𝛼𝑖, 𝛼𝑗 ≥ 0 are the Lagrange multipliers, 𝐱𝑖
†
, 𝐱𝑗

†
 denotes a set of K support vectors,  

𝑅 denotes the radius of the hypersphere that encloses the whole training data, and 𝐚 it's 

center. 

2.3.2 Similarity matching methods 

The spectral similarity matching methods (SMMs) consist of spectral information 

divergence (SID) and spectral correlation mapper (SCM). 

2.3.2.1 Spectral information divergence (SID) 

SID is a stochastic measure derived from information theory. It is used for measuring 

spectral similarity and discriminability between unknown test pixel spectra and target 

reference spectra (Chein-I Chang, 1999). SID views each pixel vector as a random variable 

and calculates the probabilistic behaviors between the reference pixel vector 𝐱 and test 

pixel vector 𝐳. The probability vectors of 𝐱 and 𝐳 are given by 𝒑 = {𝑝𝑖}𝑖  
𝑑  and 𝒒 = {𝑞𝑖}𝑖  

𝑑 , 

respectively, where 𝑝𝑖 and 𝑞𝑖 are given as follows: 
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𝑝𝑖 =
𝑥𝑖

∑ 𝑥 
𝑑
   

 𝑞𝑖 =
𝑧𝑖

∑ 𝑧 
𝑑
   

 (2.10) 

The SID, 𝜓𝑆𝐼𝐷, between 𝐱 and 𝒛 is given by 

𝜓𝑆𝐼𝐷 𝐳 𝐱𝑖 = 𝐷 𝐱𝑖 ∥ 𝐳 + 𝐷 𝐳 ∥ 𝐱𝑖    (2.11) 

𝐷 𝐱𝑖 ∥ 𝐳 = ∑𝑝𝑙

𝑑

𝑙=1

𝐷𝑙 𝐱𝑖 ∥ 𝐳    = ∑𝑝𝑙

𝑑

𝑙=1

log2 (
𝑝𝑙

𝑞𝑙

) (2.12) 

𝐷 𝐳 ∥ 𝐱𝑖 = ∑𝑞𝑙

𝑑

𝑙=1

𝐷𝑙 𝐳 ∥ 𝐱𝑖    = ∑𝑞𝑖

𝑑

𝑖=1

log2 (
𝑞𝑙

𝑝𝑙

) (2.13) 

Where 𝐷 𝐱 ∥ 𝐳  and 𝐷 𝐳 ∥ 𝐱  are relative entropy of 𝐱 with respect to 𝐳 and 𝐳 with respect 

to 𝐱, respectively, and are also known as Kullack-Leibler divergence or cross-entropy. The 

values of 𝜓𝑆𝐼𝐷 ranges from 0 to ∞. A value of 𝜓𝑆𝐼𝐷 = 0 indicates a perfect match with no 

divergence between the two spectra. The lower the 𝜓𝑆𝐼𝐷 value, the better the level of 

similarity between the reference spectra and unknown test spectra. 

2.3.2.2 Spectral correlation mapper (SCM) 

SCM is a derivative of Pearson’s linear correlation coefficient. It is commonly used to 

measure the similarity between the reference pixel and unknown pixel (van der Meero and 

Bakker, 1997). The spectral matching performance of SCM is relatively higher than 

spectral angle mapper (SAM) because SCM can perceive a difference between positive and 

negative correlation. Unlike SAM, SCM is invariant to the linear transformation of spectra. 

The mathematical expression of SCM, 𝜓𝑆𝐶𝑀, for any 𝐳 is given by 

𝜓𝑆𝐶𝑀 𝐳 𝐱 =
∑  𝑧𝒍 − �̅� 𝑑

𝑙=1  𝑥𝒍 − �̅� 

√[∑  𝑧𝒍 − �̅� 2𝑑
𝑙=1 ][∑  𝑥𝒊 − �̅� 2𝑑

𝑖=1 ]2
  (2.14) 

�̅� =
 

 
(∑ 𝑥𝑙

𝑑

𝑙=1

)  �̅� =
 

 
(∑ 𝑧𝑙

𝑑

𝑙=1

) (2.15) 

Where �̅� and �̅� are the means of 𝐱 and 𝐳 pixel vectors, respectively. The values of the 𝜓𝑆𝐶𝑀 

ranges from −  (i.e., no similarity) to +  (i.e., perfect similarity).  
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2.3.3 Multi-class classification (MCC) methods without reject-option 

Unlike OCC, multi-class classification (MCC) builds a classification model by learning 

from a training dataset containing samples from more than one class. The objective of an 

MCC model is to learn a classification model (𝑓𝑀𝐶) from   to label the unknown test 

samples as one of the labels from 𝑦. For a given test pixel vector 𝐳, the output of the trained 

MCC model 𝑓𝑀𝐶 𝐳  m  is an element of 𝑦. The assumption made by the classification 

algorithms in the MCC is that all classes are known during training, or the test classes and 

training classes are similar. This is a classic example of a closed-set recognition scenario 

where there is no consideration for unseen or UC samples. The supervised MCC methods 

without a reject option consist of a multi-class support vector machine (MSVM), random 

forest (RF), and a 1D deep convolution neural network (1D-DCNN). 

2.3.3.1 Multi-class support vector machine (MSVM) 

SVM is one of the most popular and widely used supervised algorithms for binary or two-

class classification. It is a non-parametric method adopted from the machine learning 

paradigm and has been successfully applied to a plethora of pattern recognition problems 

across various real-world application domains. The objective of the SVM (binary case) is 

to find the maximum margin optimal hyperplane between the two classes i.e., 𝑦 ∈

{−  + } (Cortes and Vapnik, 1995). The main advantage of SVM is that the hyperplane 

is built using few training samples called support vectors. Moreover, a soft-margin solution 

in SVM accounts for non-separable data and noisy data by introducing 𝜉 whose cost is 

controlled by tuning regularization parameter 𝐶 > 0, which has the ability to generalize 

the classifier by relaxing the outliers in the  . The optimal hyperplane of SVM is obtained 

by solving the following primal optimization problem. 

min
𝐰 𝑏 𝜉

𝐿 𝐰 𝑏 =
 

 
‖𝐰‖ + 𝐶∑𝜉𝑖

𝑖

 

                                 subject to   y𝑖 𝐰
𝑇𝐱𝑖 + 𝑏 ≥  − 𝜉𝑖 ∀𝑖 =     𝑛 

                                                    𝜉𝑖 ≥ 0 

(2.16) 
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where 𝑏 represents the bias of the optimal separating hyperplane from the origin and 𝐿 is a 

Lagrange function. The above primal minimization problem can be rewritten as a dual 

optimization through 𝛼𝑖 leading to a QP solution. Then, the decision function of SVM 𝑓𝑆𝑉𝑀 

for any test vector 𝐳 ∈ ℝ𝑑 is given by 

𝑓𝑆𝑉𝑀 𝐳  m ≡ 𝑓 𝐳 𝐱† 𝛼 𝑏 = 𝑠𝑖𝑔𝑛 ((∑𝑦𝑖𝛼𝑖𝐾( 𝐱𝑖
† 𝐳)

K

𝑖  

) + 𝑏) (2.17) 

   In many applications, it is effective and desired to classify more than two classes. In such 

cases, the idea of SVMs can be extended to solve MCC problems by constructing a group 

of binary classifiers (BCs). There are two different approaches for constructing MCC using 

BCs, such as the widely used one-against-one (OAO) technique known for its high 

reliability and accuracy and the one-against-all (OAA). The OAO method breaks down a 

 -class MCC problem into a P number of BCs  P >   ∀  >   , where   

P = (
 

 
) =  𝐶2

=
   −   

 
  (2.18) 

Let {𝑓𝑆𝑉𝑀
    𝑓𝑆𝑉𝑀

P } be the set of BCs in OAO and 𝑓
𝑀 𝑉𝑀

∈ ℝ    ∈ ℕ  be the 

combinational function of P-set of BCs in OAO, where each classifier 𝑓𝑆𝑉𝑀
P  𝐳 𝜃m

P   ∈

{−  + } produces a binary decision. Subsequently, out of a total P number of decision 

values for a pixel vector, a class label is mapped to the pixel vector using the majority 

voting strategy by 𝑓
𝑀 𝑉𝑀

 𝐳 . Mathematically, we can represent the decision function 

𝑓
𝑀 𝑉𝑀

 𝐳 ∈ 𝑦 of MSVM using OAO technique for any test vector ‘z’ as 

𝑓
𝑀 𝑉𝑀

 𝐳  m = 𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦 𝑣𝑜𝑡𝑒 {𝑓𝑆𝑉𝑀
P (𝐳 𝜃m

𝑖 )}
𝑖

P
 ∀𝑖 =      P (2.19) 

2.3.3.2 Random forest (RF) 

RFs were first introduced in (Breiman, 2001) as an ensemble learning approach that is used 

for regression as well as classification. An ensemble approach is a technique aimed at 

improving accuracy by combining several models instead of a single model. In RF, several 

classifiers are trained to generate multiple hypotheses and their class predictions are then 

combined to produce a single decision through a non-trainable combination function like 

the majority voting rule (Ghamisi et al., 2017). The main principle behind using an 
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ensemble of methods is to encourage diversity among the classifiers to improve stability 

and prediction accuracy. Let {   𝐳     𝐵 𝐳 } be the individual class predictions of 𝐵 

trees for the test pixel vector 𝐳, then the decision function of RF is given by 

𝑓𝑅𝐹
𝐵 = 𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦 𝑣𝑜𝑡𝑒{ 𝑖 𝐳 } 

𝐵 ∀𝑖 =     𝐵  

𝑓𝑅𝐹
𝐵 ∈ 𝑦  𝑖 𝐳 ∈ 𝑦 

(2.20) 

    In general, RFs are considered to be a special case of decision trees but RFs grow many 

classification trees that are randomized to decorrelate their predictions. The techniques like 

bootstrap or bagging help to create training data by resampling the original data in a random 

fashion with replacement. This process of resampling training data makes RFs insensitive 

to the presence of noise in training data and prevents overfitting. There are two free 

parameters ( f) in the RFs training phase, namely the number of trees and the number of 

splits or prediction variables. These adjustable parameters can be tuned using grid search 

and cross-validation methods. 

2.3.3.3 Deep convolution neural network (DCNN) 

Deep learning (DL) techniques have seen a global trend towards skyrocketing increase in 

popularity and use across various scientific and engineering disciplines in recent years. The 

increasing popularity and usage of DL algorithms are mainly because of their ability to 

learn representative and discriminative features hierarchically employing various layers of 

abstraction. The word deep in DL usually means a depth of more than two hidden layers in 

a neural network (NN) architecture. There are different types of DL-based NNs depending 

upon the network architecture used, such as recurrent (cyclic) NN, convolutional NN, deep 

belief NNs, and more. However, deep convolution NNs (DCNNs) have attracted 

widespread attention in many vital applications. The DCNN architecture consists of 

various hidden components or layers like convolution layers, pooing layers, fully 

connected (dense) layers, and activation functions, as shown in Figure 2.3. A convolution 

layer produces feature maps using the following expression:  
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𝐱𝑗
𝑙 = 𝑓 ((∑𝐱𝑖

𝑙− ∗ 𝐤𝑖𝑗
𝑙

𝑖

) + 𝑏𝑖
𝑙)  ∀𝑖 =     𝑀† (2.21) 

where 𝐱𝑖
𝑙−  is the 𝑖𝑡ℎ feature map of  𝑙 −   𝑡ℎ layer, 𝐱𝑗

𝑙 represents the 𝑗𝑡ℎ feature map of 

current 𝑖𝑡ℎ layer, 𝑀† is the number of input feature maps, and 𝑓    is a non-linear activation 

function. The trainable parameters 𝐤𝑖𝑗
𝑙  and 𝑏𝑖

𝑙 represents the kernel or weights and bias in 

the convolution layer, respectively. The pooling layer is used to down sample the feature 

maps using either max or average rule. The fully connected layers stack the reduced 

features to perform classification. 

2.3.4 Multi-class classification (MCC) methods with reject-option 

The reject option-based MCC methods for open-set problems consist of open-set classifiers 

like multi-class pairwise SVM with Platt probability estimation (P-SVM) and two open-

set nearest neighbor (OSNN) extensions: OSNN class verification (OSNNCV) and OSNN 

nearest neighbor distance ratio (OSNNNNDR).  

2.3.4.1 Open set nearest neighbor cross verification (OSNNCV) 

The OSNNCV is a particular case of the nearest neighbor classifier, which aims at solving 

the multi-class open-set problems. It is based on the verification of class labels of the two 

 

 

Figure 2.3: One-dimensional deep convolution neural network (ID-CNN) 
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nearest neighbors with respect to an unknown test pixel vector. The training stage of the 

OSNNCV is similar to the nearest neighbor algorithm that stores all the available training 

samples  . In the classification stage, OSNNCV finds two nearest neighbors from the test 

pixel vector 𝐳 and labels it as unknown if both nearest neighbors have different labels; 

otherwise, the common label of the nearest neighbors is assigned to the test sample. 

Mathematically, this can be expressed as 

𝑓𝐶𝑉 𝐳 = {
𝑦† 𝑖𝑓 𝑓 𝒖 = 𝑓 𝐯   

 0 𝑖𝑓𝑓 𝒖 ≠ 𝑓 𝐯     
 (2.22) 

Where class label 0 represents the class label for unseen class or UC samples, and 𝑦† ⊆ 𝑦 

represents the label of the two nearest neighbors of z, i.e., 𝐮 and v. 

2.3.4.2 Open set nearest neighbor based nearest neighbor distance ratio (OSNNNNDR) 

Like OSNNCV, the OSNNNNDR classifier is another special variant of the nearest neighbor 

classifier for solving open-set problems. The open-set prediction performance of 

OSNNNNDR is better than OSNNCV because it considers the Euclidean distance between 

two different labeled nearest neighbors of test samples and the test sample. Unlike 

OSNNCV, the training phase of OSNNNNDR consists of tuning an optimum threshold from 

  for classification. For a given test sample 𝐳, the OSNNNNDR method obtains two nearest 

neighbors, i.e., 𝐮 and v, with different class labels, i.e., 𝑓 𝒖 ≠ 𝑓 𝐯 . Then we calculate 

the distance ratio 𝐷𝑟 as  

𝐷𝑟 =
  𝐮 𝐳 

  𝐯 𝐳 
  (2.23) 

where        represents the Euclidean distance between two-pixel vectors in the feature 

space. If 𝐷𝑟 is less than or equal to the trainable threshold 𝑇𝑟 ∈  0    then 𝐳 is classified as 

the same label of 𝐮. Otherwise, it is labeled as unknown or as UC. Mathematically, this 

can be expressed as 

𝑓𝐷𝑅 𝐳 = {
𝑓 𝒖  𝑖𝑓 𝐷𝑟 ≤ 𝑇𝑟  
        0 𝑖𝑓𝐷𝑟 > 𝑇𝑟    

 (2.24) 

Where label 0 represents the label for unknown or UC samples, and 𝑓𝐷𝑅 represents the 

decision function for OSNNNNDR. 
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2.3.4.3 Multi-class pairwise SVM with Platt probability estimation (P-SVM) 

The P-SVM is a variant of MSVM which uses Platt probability estimation to produce 

probabilistic decision scores for classifying a test sample. The training phase of P-SVM 

follow the same procedure of MSVM, but it also includes Platt scaling to produce 

probability scores and then learning a thresholding probability score 𝑇𝑝 ∈  0    for 

enabling the reject option. During the classification stage, for a given 𝐳 the posterior 

probability score of 𝑖𝑡ℎ class (i.e., 𝑃𝑠 𝑦𝑖|𝐳 ) using Platt scaling is given by, 

𝑃𝑠 𝑦𝑖|𝐳 =
 

 + exp  𝐴𝑖𝑓𝑀𝑆𝑉𝑀 𝐳 + 𝐵𝑖 
 ∀𝑖 =     𝑚 (2.25) 

where 𝑓𝑀𝑆𝑉𝑀 represents the prediction labels using MSVM, 𝑚 represents the number of 

KCs and the two scalar parameters 𝐴𝑖 and 𝐵𝑖 are learned by the algorithm, i.e., model 

parameters. Then 𝐳 is classified using the following decision rule 

𝑓𝑃𝑆𝑉𝑀 𝐳 = {
𝑦𝑖 𝑖𝑓𝑃𝑠 𝑦𝑖|𝐳 ≥ 𝑇𝑃  

   0 𝑖𝑓𝑃𝑠 𝑦𝑖|𝐳 < 𝑇𝑃    
 (2.26) 

where 𝑦𝑖 denotes the 𝑖𝑡ℎ class label that has the maximum probability score. 

2.4 Classification Accuracy Assessment 

The assessment of classification accuracy is an essential part of measuring the quality of 

information mining. Let us consider a confusion matrix 𝐶† with elements 𝑐𝑖𝑗
†

 where 𝑖 𝑗 >

   and 𝑚 represents the number of classes in the reference map. The following are the 

popular metrics, derived from the confusion matrix, used to quantify the accuracy of the 

output of any classification tasks. 

• 𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦  𝑂𝐴  =
∑ 𝑐𝑖𝑖

†𝑚
𝑖  

∑ 𝑐𝑖𝑗
†𝑚

𝑖 𝑗  
×  00 (2.27) 

• 𝑃𝑟𝑜 𝑢𝑐𝑒𝑟′𝑠 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦  𝑃𝐴𝑖 =
𝑐𝑖𝑖
†
 

∑ 𝑐𝑖𝑗
†𝑚

𝑗  
×  00 (2.28) 
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• 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦  𝐴𝐴  =
∑ 𝑐𝑖𝑖

†𝑚
𝑖  

∑ 𝑃𝐴𝑖
𝑚
𝑖 𝑗  

×  00 (2.29) 

2.5 Real-Time Processing 

A real-time processing system is required to process the inputs instantaneously (i.e., 

ideally) or near-instantaneously (i.e., practically) over time to say that the data processing 

is done in real-time or at runtime. If 𝑇𝑖 is the time duration between two 

successive/consecutive inputs, then the real-time system has a time equal to or less than 𝑇𝑖 

to process and produce output. The restriction of the time specified for the computation of 

streaming inputs is known as the timing constraint. A processing system with 𝑇𝑅𝑇 denoting 

the time taken for processing inputs is said to be real-time processing if it satisfies the 

following timing constraint: 

𝑇𝑖 ≥ 𝑇𝑅𝑇 (2.30) 

    An algorithm or a system is considered to be implementing real-time processing if the 

time taken by the system to process the inputs, say 𝑇𝑅𝑇, is satisfying the timing constraint 

of the form shown in Equation (2.30). The value of time frame or time delay 𝑇𝑖 is a vital 

attribute in real-time systems and is determined by the specific application or by imaging 

sensor scanning time. 

2.6 FPGA Design Workflow 

The current and emerging diverse use of image processing applications range from a wide 

spectrum of science and engineering streams to farming, industrial, planetary study, 

military, and so on. It is well known that most of these applications are associated with 

constraints like power usage, computation in real-time or near real-time, size, etc. Digital 

circuits like FPGAs, GPU, ASICs are popularly used to compensate for application-

specific constraints than Traditional computing systems. Among the existing computing 

options, FPGAs have attracted a lot of attention due to their inherent on-the-fly 

reconfigurability, power usage, size, and cost-effectiveness. There are many methods 
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available to program an FPGA to the specification of an application. For example, the two 

most popular languages use hardware description language (HDL) style such as Verilog 

and very high-speed integrated circuit HDL(VHDL). However, the FPGA design flow 

typically comprises several steps, including design entry, synthesis, implementation, static 

timing analysis, and programing the FPGA with the generated bitstream file (see Figure 

2.4). Based on the application specification, design entry is done using HDL or any tool 

that converts high-level script to HDL. A bitstream is generated after the design passes the 

behavioral simulation, synthesis, implementation, and timing analysis. 

2.7 Literature Review 

A systematic and comprehensive review of recent studies reported in the literature on real-

time processing for image classification using HSIs/MSIs for real-time environments is 

discussed here from two different perspectives. One is from a computational perspective, 

and the other is from an algorithmic perspective. The computational perspective provides 

details about the relevant work reported on approaches focused on accelerating the 

MSI/HSI classification using FPGA as a hardware accelerator for achieving real-time 

processing. At the same time, the algorithmic perspective discusses the research studies 

reported on enhancing the robustness and classification performance of algorithms 

targeting the real-time environments with challenges like the presence of UCs, shadows, 

and varying illumination effects. 

 

 

Figure 2.4: Illustration of a general workflow followed to design the FPGA 

architecture. 
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2.7.1 Computation perspective 

In (Estlick et al., 2001), a mapping of K-means unsupervised clustering-based image 

classification algorithm using both MSIs and HSIs to FPGA hardware is proposed. They 

have explored algorithmic level transforms and trade-offs such as distance measures and 

number representation formats for the K-means algorithm for designing reconfigurable 

FPGA hardware. The HSI dataset with 224 16-bit channels is from the AVIRIS sensor, and 

MSI with ten channels of 16-bit data is from a simulated multispectral thermal imager. The 

hardware implementation was on a peripheral component interconnect (PCI) board with 

three Xilinx Virtex1000 FPGAs written in VHDL. The experimental results indicate a two-

fold speedup increase against the software implementation. In (Pingree, Scharenbroich and 

Werne, 2008), an on-board pixel-based image classification using FPGA co-processor 

design to implement a sea, water, ice, and land (SWIL) classifier is presented. They used 

Hyperion HSI with 11 and 30 arbitrarily selected bands out of 242 available bands in the 

image. The SWIL classifier uses a multiclass SVM method with linear and polynomial 

kernels. The FPGA co-design on the Xilinx Virtex-4FX60 FPGA on ML410 board is done 

using Impulse C tool which is a commercially available tool for converting C to HDL code. 

The obtained results indicate an overall hardware resource usage of less than 4% and a 

minimum accuracy difference between software and hardware implementations of the 

considered experiments. 

    In (Wang et al., 2016), a scalable data flow engine (DFE) FPGA-based hardware 

accelerator for real-time on-board HSI classification is proposed. The accelerator is 

implemented on a Maxeler MAX4 DFE having Altera Stratix V FPGA and designed using 

java-based MAXJ language. The study used 6 out of 16 classes each from Indiana scene 

and Salinas valley scene HSIs with 9 out of 224 spectral bands that are recorded from 

AVIRIS sensor. The multiclass one-vs-one SVM algorithm with RBF kernel and Hamming 

distance as discriminant function is selected as the classification technique to implement 

offline training and on-board classification. The obtained accuracy results are satisfactory, 

FPGA fabric usage of less than 82%, and the significant speedup was achieved for FPGA 

over other accelerators indicating a plausible future for real-time on-board HSI 
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classification. In (Basterretxea et al., 2016), an extreme learning machine (ELM) based 

onboard learning and real-time classification using HSIs are presented. Two accelerators, 

namely, the Xilinx KC705 board with Kintex-7 FPGA and MicroZed board with Zynq-

7020 programmable system on chip (PSoC), were considered in this study and are designed 

using custom made intellectual property (IP) cores. In this work, Kennedy space center 

HSI has 13 classes recorded from AVIRIS sensor with 176 bands in one case and reduced 

first 10 principal components in the other case were used for training and testing. The 

obtained results in terms of classification accuracy, latency, and throughput indicate 

feasibility of on-chip learning and classification tasks. 

2.7.2 Algorithmic perspective 

Some of the early and seminal works in remote sensing related to image classification even 

in the presence of uncertainties like UCs, shadows, and varying illumination effects are 

discussed here. In one of the early works, (Gorte and Gorte-Kroupnova, 1995) proposed a 

non-parametric image classification algorithm in case a UC is present in MSIs. Without 

knowing the prior probabilities of KCs and UCs, the described algorithm performs 

classification using the Bayesian decision rule and K-nearest neighbor (KNN) to estimate 

the maximum a posterior (MAP) probability of each class, including UC. The experiments 

were conducted on an RGB image and a three-band MSI. Similar work was conducted in 

(Mantero, Moser and Serpico, 2005), where a Bayesian algorithm with probability density 

function (PDF) estimation based on an SVM classifier with RBF kernel was used instead 

of k-NN. They have used two real MSIs and one synthetic MSI to perform image 

classification with different cases of UCs. The authors in (Jun and Ghosh, 2013) proposed 

a semi-supervised spatially adaptive mixture model (SESSAMM) to classify HSIs in the 

presence of UCs. Similar to previous works, SESSAMM uses a nonparametric Bayesian 

framework to handle mixture models with an unknown number of components. Two 

different HSIs were used to conduct the classification experiments with different UC in 

each trial. In (Mũnoz-Marí et al., 2010), two semi-supervised OCSVM variants are 

proposed for OCC of different types of remote sensing data such as optical and radar. In 

(Condessa, Bioucas-Dias and Kovačević, 2016), a supervised HSI classification algorithm 
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with rejection using contextual priors and MAP estimates was presented. The experiments 

were carried on two multi-sensor HSIs to demonstrate the classification with rejection for 

UCs. 

    The presence of shadows and varying illumination effects in images are two of the most 

challenging problems in real-world image-driven analysis. These problems are also severe 

with MSIs and HSIs because their presence will produce undesirable effects on image 

analysis algorithms. Over the years, many published scientific studies and articles in the 

literature indicate a growing research interest in shadow-related image analysis. In (Adler-

Golden et al., 2001), a physics-based shadow-insensitive detection or classification of 

materials using atmospherically corrected HSIs is presented. The atmospherically 

corrected HSI data is used to generate a simulated shadow spectrum signature of the chosen 

material and then used for shadow-invariant detection or classification problems. Later, 

they used spectral angle and distance for spectral-based matching between manually 

selected apparent endmember spectra and test examples. In (Dare, 2005), an unsupervised 

classification algorithm was used on a pan-sharpened four-band MSI and also on a single-

band panchromatic image for shadow classification and found identical results for both the 

spaceborne images. And techniques like density slicing, thresholding, region encoding, and 

region filtering are used. In (Sanin, Sanderson and Lovell, 2012), a survey and comparative 

evaluation of recent techniques for shadow detection using traditional RGB images are 

presented. The taxonomy of recently published articles implies that using physics-based or 

texture-based features is the most used among other features. In (Qiao, Yuan and Li, 2017), 

a supervised shadow detection and classification algorithm using HSI of an urban setting 

is presented. The algorithm uses a sequence of steps like thresholding, spectral indices, 

feature extraction, spectral separability, SAM, maximum likelihood classifier, and SVM. 

In (Windrim et al., 2018), a physics-based deep learning approach to shadow and 

illumination invariant representation of HSIs is presented. The method uses relit spectral 

angle stacked autoencoder-based unsupervised feature learning for mapping HSIs to 

shadow and illumination invariant images. Subsequently, a supervised classifier such as k-

NN or SVM is used to label the invariant HSIs. In (Liu et al., 2019), classification of HSIs 
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by 2D-CNN based on shadow region enhancement through dynamic stochastic resonance 

is proposed. 

2.8 Summary 

This chapter presented a mathematical and theoretical background of data intake using 

MSIs/HSIs, processing, a brief description of various supervised classification methods, 

real-time processing, and FPGA design workflow. Further, a detailed survey of different 

studies related to MSI and HSI classification from both algorithmic and computation 

perspectives is briefly described. 
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CHAPTER 3 

DESIGN AND DEVELOPMENT OF FPGA-BASED 

REAL-TIME IMAGE CLASSIFICATION 

Prelude: This chapter presents and discusses a novel design and development of the 

hardware architecture for hyperspectral imagery classification using an FPGA as an 

onboard accelerator. A rapid FPGA prototyping scheme using a high-level architecture 

design tool is considered in designing the hardware architecture. The performance 

evaluation measures considered in our study are thematic classification accuracies derived 

from the error matrix and FPGA design metrics such as timing, speed, and logic capacity, 

and power usage. 

3.1 Introduction1 

Over the past few decades, hyperspectral imaging techniques are increasingly used in 

various remote sensing application areas of science and engineering disciplines. Some 

application areas include monitoring and mapping applications of Earth system dynamics, 

medical, defense, and precision agriculture, etc (Clark et al., 2003; Goetz, 2009; Madroñal 

et al., 2017; Makki et al., 2017). Hyperspectral imaging systems use specialized sensors to 

capture images having both spatial and spectral information of remote scenes for every 

pixel. They provide three-dimensional image data cube products, popularly known as HSIs, 

having two spatial dimensions and one spectral dimension (Eismann, 2012). The increasing 

interest in using HSIs as the primary choice of data in remote sensing analysis is because 

 
1 This chapter is published as an article in Geocarto International, on 20th January 2020, with the 

title: “A real-time FPGA accelerated stream processing for hyperspectral image classification”, and 

has a doi: 10.1080/10106049.2020.1713231. Authors: Dubacharla Gyaneshwar and Rama Rao 

Nidamanuri. 

https://doi/
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of their rich spectral content and spatial information of remotely sensed objects in a scene 

for each pixel (Manolakis, Marden and Shaw, 2003; Du and Nekovei, 2009). This rich 

spectral information enables accurate material discrimination with increased accuracy than 

MSIs. Recent technological advances in the field of remote sensing are the development of 

advanced imaging platforms and portable sensors. 

In contrast to the spaceborne imaging platforms, airborne platforms such as aircraft and 

unmanned aerial vehicles (UAVs) have proven relatively effective in low operational costs. 

The state-of-the-art specialized imaging platforms and sensors can record high-spatial and 

spectral resolution imageries to cater to the requirements of a diverse range of remote 

sensing applications (Hagen and Kudenov, 2013; Yue et al., 2017; Behmann et al., 2018; 

Kemker, Salvaggio and Kanan, 2018). These advancements have fostered the way to 

broaden the current and future remote sensing application domains of HSI analysis (Khan 

et al., 2018). 

However, there are some practical challenges and issues involved in HSI analysis that 

are to be addressed to facilitate the application requirements of real-world tasks. One such 

challenging key aspect is that many current and future image analysis and image processing 

systems applications are time-critical because they usually operate in dynamic 

environments (Chang, 2016). Some examples of time-critical applications like disaster 

management, precision agriculture, health care, industrial inspection, surveillance, etc., 

require immediate assessment and response for (near) real-time decision making (Chang, 

Ren and Chiang, 2001; Salem and Kafatos, 2001; Gowen et al., 2007; Sun, 2010). Unlike 

static or fixed environments, the information present in a testing scene in dynamic 

environments would change continuously, either periodically or aperiodically, over time. 

In some cases, testing environments can combine static or repeatable and dynamic or 

stream environments. So, it is imperative to have methodologies capable of performing the 

runtime or real-time data processing to mitigate the performance bottlenecks involved in 

analyzing large volumes of high-dimensional HSIs. 

 In general, real-time data processing deals with the arrival of a continuous stream of 

data inputs that needs to be analyzed in a short turnaround time to provide real or near-
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instantaneous outputs. The amount of time between two consecutive incoming data is the 

maximum available time to process the first input, produce output before the arrival of the 

second input, and so on. This runtime deadline of upper bound (i.e., maximum allowed) 

time to process inputs is known as timing constraint that is a vital attribute in the real-time 

processing systems (Chang, 2016). The timing constraints are defined based on the selected 

application, i.e., application-specific. Several research efforts have been directed towards 

HPC systems to address the computational requirements of various time-critical 

applications using HSIs, as reported in the literature. HPC systems such as FPGAs, GPUs, 

and cluster computing are popularly used in remote sensing missions (Plaza, 2008). Among 

the abovementioned HPC systems, FPGAs are advantageous in energy efficiency, 

reconfigurability, and portability (Fowers et al., 2012; González et al., 2013; Lopez et al., 

2013). Therefore, the use of FPGAs is more prevalent to achieve real-time processing for 

remote sensing applications, especially for HSIs analysis. 

There are several HSI data analysis techniques such as classification, target detection, 

feature selection, and feature extraction. The objective of each one of the data analysis 

techniques is focused on providing the user-desired outputs using HSIs. However, 

classification is considered as one of the most prominent techniques of HSI analysis 

because it construes large quantities of information that has multiple usages, and it also 

includes subtle functionalities of detection, discrimination, identification, and 

quantification (Chang, Ren and Chiang, 2001; Chang, 2003; Ghamisi et al., 2017). In 

recent years, there is a fair amount of research reported in the literature on HPC systems 

for remote sensing HSI analysis. Still, most of the studies are related to designing and 

implementing techniques such as unmixing, detection, and dimension reduction (Bioucas-

Dias et al., 2013). Yet, there is still a dearth of research on optimal design approaches of 

FPGA architectures and their implementations for HSI analysis techniques, more 

specifically for image classification.  

Over the past few decades, there is an emerging trend in using machine learning 

techniques in remote sensing for image classification objectives. Among the existing 

machine learning-based image classification algorithms, SVM is one widely used 
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supervised classification method. The wide usage of SVM is due to several benefits like 

their robustness to the noise, ability to provide models with sparse solutions for a 

reasonably limited amount of training data, and ease of usage in any given task (Cortes and 

Vapnik, 1995; Ghamisi et al., 2017). The optimal sparse solution of the SVM, known as 

support vectors, is the use of a few training vectors to construct a hyperplane boundary 

(Camps-Valls et al., 2004). Nevertheless, SVMs have computation complexity and linearly 

grow with the number of support vectors making it uncertain and complex to process HSIs 

using software implementation alone (Papadonikolakis and Bouganis, 2012). In such cases, 

high-performance reconfigurable computing systems like FPGAs are one of the potential 

solutions available in achieving the real-time processing of HSI classification. 

However, there are several significant challenges present in designing FPGA-based 

hardware architecture for hyperspectral imagery classification. Some of the crucial 

challenges that are yet to be addressed in these areas are writing a comprehensive or full-

scale hardware-specific code, debug, and design verification (Tessier, Pocek and DeHon, 

2015). In particular, efficient strategies and frameworks with minimum usage complexity 

are needed to design FPGA architecture for HSI classification. In this regard, a high-level 

architecture design tool like XSG enables the automatic synthesis of HDL code (Feist, 

2012; Xilinx User Guide, 2016). XSG tool operates at a high-level abstract model with 

libraries containing optimized predefined hardware-specific primitive digital signal 

processing (DSP) functions like addition, multiplication, accumulator, etc. Therefore, in 

this chapter, we employ XSG to design FPGA architecture that performs real-time 

hyperspectral image classification. The computation performance of the designed FPGA 

architecture is compared with the software-based implementation. 

This chapter is organized into six sections. The following section presents the research 

problem statement, while section 3.3 briefly describes the datasets used in our analysis of 

this chapter. Section 3.4 presents the software and hardware implementation 

methodologies and frameworks used to investigate this chapter's goals. Section 3.5 

describes and discusses the experimental results obtained. Finally, the last section presents 

the conclusions of this chapter. 
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3.2 Problem Statement 

Consider an imaging spectroradiometer that takes 𝑇𝑖𝑚 time to record spectral reflectance 

of scene surface to produce an HSI 𝐗 ∈ ℝ𝑚×𝑛×𝑑 with 𝑚 rows, 𝑛 columns, and   spectral 

channels. Then, let 𝑇𝑖 be the time taken by the imaging sensor for recording a single-pixel 

vector, say 𝑖𝑡ℎ pixel vector 𝐱𝑖 ∈ ℝ𝑑 where 𝑖 =     𝑁 and 𝑁 = 𝑚 × 𝑛. Therefore, 𝑇𝑖 is 

the maximum time allowed to process a single pixel vector for achieving real-time or near 

real-time per-pixel based HSI classification. Mathematically, if 𝑇𝑅𝑇 is the time taken to 

process a single input test pixel vector and then to realize real-time processing of HSI 

classification, the timing constraint shown in Equation (2.30) should be satisfied. 

This chapter presents a novel low-complexity strategy to design and develop FPGA 

architecture to realize onboard real-time HSI classification using supervised approaches. 

As mentioned before, a supervised learning approach has two phases, namely the training 

phase and the classification phase. Since the training phase has computational bottlenecks 

at run-time, it is better to perform offline training rather than online to avert the overheads 

of on-chip learning. After offline model training, the model parameters are used to design 

FPGA architectures to perform real-time pixel-based classification for a given HSI. 

3.3 Datasets Used 

We used four different sources of multi-platform and multi-sensor HSIs. One HSI each 

from AVIRIS-NG, reflective optics system imaging spectrometer (ROSIS), and two HSIs 

from Cubert UHD 185s sensor. The four outdoor images with different spatial and spectral 

resolutions are covering several land cover categories and sites. These HSI datasets were 

selected to form a complete and non-trivial experimental setup to assess the generalization 

of the methods. In order to measure the performance of algorithms quantitatively, we 

manually interpreted and collected the ground truth reference samples. True color 

composites and ground truth maps of the four images are shown in Figure 3.1. 

Pavia University image: The airborne Pavia University HSI is provided by Prof. 

Paolo Gamba from the Telecommunications and Remote sensing laboratory (TRSL), 
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University of Pavia, Italy. The ROSIS dataset was acquired during a flight campaign by 

ROSIS-03 sensor, in July 2001, over the University of Pavia, Italy, under cloud-free sky 

conditions. This data comprising of 6 0 × 340 spatial pixels, each having a high-spatial 

resolution of 1.3 m and 103 spectral bands (after removing the water absorption and bad 

bands) were collected in the spectral range 0.43 to 0.86 𝜇m with a nominal spectral 

resolution of 0.04 𝜇m. We selected five heterogeneous urban classes out of nine 

information classes: asphalt, meadows, gravel, trees, and metal sheets. Figure 3.1(a) shows 

the true color composition and ground truth reference map for the Pavia University image. 

  

     

                                                    
                        (a)                                                                    (b) 
 
 
 
 
 
  
  
 
 
        
 
           
                                                                     
                                      (c)                                                                         (d) 

Figure 3.1: Three-band RGB display of hyperspectral data and their reference 

maps of: (a) Pavia University, (b) AVIRIS-NG, (c) Drone, and (d) 

Terrestrial. For each image, colored legend is also provided. 
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AVIRIS-NG image: The airborne AVIRIS-NG HSI was acquired over the urban 

area of the Ahmedabad region, India, in January 2016. The subset image has a spatial 

dimension of 400×565 pixels with a fine spatial resolution of 4 m and has 351 spectral 

bands in the wavelength range 0.38 to 2.51 𝜇m with a spectral resolution of 0.05 𝜇m. The 

predominant land use categories in the study site are asphalt, building, soil, water, and 

vegetation. Figure 3.1(b) shows the true color composition image and ground truth 

reference map of the AVIRIS-NG image. 

Drone image: The outdoor airborne-based platform Drone image was acquired by 

us on 5th April 2017. This image was recorded by the Cubert UHD 185s sensor mounted 

on Quadcopter-drone flying at an altitude of 20 m capturing the top view of agriculture 

crops grown in the fields of the University of Agricultural Sciences, Bengaluru, India. This 

image consists of 1000×1000 spatial pixels with a very high spatial resolution of 5 cm and 

has 139 spectral bands in the wavelength range 0.45 to 0.95 𝜇m with a spectral resolution 

of 0.08 𝜇m. Figure 3.1(c) displays the RGB image and ground truth reference map of the 

Drone image. Figure 3.1(c) shows that the drone image contains three dominant 

information classes: eggplant, cabbage, and soil. 

Terrestrial image: The terrestrial HSI was acquired over the agriculture crops 

grown in the experimental fields of the University of Agricultural Sciences, Bengaluru, 

India, on 5th April 2017. This dataset was captured by the Cubert UHD 185s sensor 

mounted on the ground-based tripod capturing the top view of the cabbage crop. The Cu-

T image has 1000×1000 spatial dimensions with an ultra-high spatial resolution of 2 mm, 

and a total of 139 spectral bands were collected in the spectral range 0.45 to 0.95 𝜇m with 

a spectral resolution of 0.08 𝜇m. The predominant LULC categories in the study site are 

cabbage crop, soil, and pipe. Figure 3.1(d) shows the RGB image and ground truth 

reference map of the Terrestrial image. 
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3.4 Methodology 

This section briefly describes the FPGA-based classification framework in two steps: 

software implementation (offline mode for training) and hardware implementation (online 

mode for classification) (see Figure 3.2). A detailed discussion of each step is as follows. 

3.4.1 Software implementation of MSVM training 

As mentioned before, a MATLAB version of the training stage based on the LIBSVM 

library is realized to formulate a classification model before online classification (see 

Figure 3.2). To ensure the stability and performance of the classification model on out-of-

sample data, the cost parameter of the MSVM classifier 𝐶 is tuned by grid search technique 

using 10-fold cross-validation (CV). The search is conducted across the predefined 

parameter space 𝐶 = {   00  0   0   05  07}. Each 𝐶 value with 10-fold CV results in 

cross-validation accuracy (CVA) and its expression is given by CVA=𝑚𝑒𝑎𝑛{[𝑂𝐴cv]cv  
 0 }. 

As shown in Figure 2.2, a final model is formulated from a set of candidate models by 

selecting an optimal hyperparameter (𝐶BEST) which gives the highest CVA (i.e., best CVA) 

among the group of candidate models. The considered CV scheme prevents the final model 

from overfitting the training data and generates an effective classification model (Chang 

and Lin, 2011). The trained classification model so obtained has P binary hyperplanes, each 

defined by the parameter set denoted 𝜃𝑑𝑢𝑎𝑙 = {𝐱𝑖 𝑦 𝛼 𝑏}, thereby introducing 

considerable memory requirement. This problem is addressed by transforming Equation 

(3.1) back to the primal version (Pingree, Scharenbroich and Werne, 2008; Madroñal et 

al., 2017). The dual-form of a linear kernel classification model 𝑓 𝐳 𝜃𝑑𝑢𝑎𝑙  can be 

optimized in terms of input arguments by rewriting it in the primal form 𝑓(𝐳 𝜃𝑝𝑟𝑖𝑚𝑎𝑙) 

 𝜃𝑝𝑟𝑖𝑚𝑎𝑙 = {𝐰 𝑏}  using Equation (3.2) (see Equations (3.3) and (3.4)). As a result, the 

MSVM model performance is maximized by reducing the considerable amount of memory 

and computational resources required for a pixel vector-level classification.   
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𝑓 𝐳 𝜃𝑑𝑢𝑎𝑙 = 𝑠𝑖𝑔𝑛 ((∑𝑦𝑖 ⋅ 𝛼𝑖 ⋅ ( 𝐱𝒊
𝐓 ∙ 𝐳)

K

𝑖  

) + 𝑏) (3.1) 

𝐰 = ∑𝛼𝒊 ⋅ 𝑦𝒊 ⋅  𝐱𝒊

K

𝒊  

  (3.2) 

𝑓 𝐳 = (∑𝛼𝑖 ∙ 𝑦𝑖 ∙ 𝐱𝑖

K

𝑖  

)

T

𝐳 + 𝑏 

(3.3) 

𝑓 𝐳 𝐰 𝑏 = 𝐰T𝐳 + 𝑏 (3.4) 

3.4.2 Hardware implementation of MSVM classification 

This subsection describes an FPGA-based hardware design for the MSVM algorithm using 

a system-level modeling approach for rapid prototyping. An abstract representation of a 

communication process between systems is shown in Figure 3.2. The top-level architecture 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: A schematic block diagram of the proposed classification 

framework. Note that offline training in the host computer and 

online classification using FPGA are shown above and below of 

horizontal dashed line, respectively. 
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of the proposed scheme consists mainly of two systems: a host computer and an FPGA 

board (see Figure 3.3). The host computer is responsible for HSI data streaming, receiving 

labels, and input/output (I/O) communications with FPGA. A typical FPGA board has two 

modules: a fixed functionality module and an FPGA (XC7A35T) chip. The fixed modules 

on the FPGA board used in the current study include a 100 MHz system clock, a universal 

serial bus (USB) - universal asynchronous receiver-transmitter (UART), and a joint test 

action group (JTAG) interface (that provides USB connectivity to FPGA board with a 

UART interface). The XC7A35T FPGA chip is a custom circuitry module that is used to 

implement the MSVM algorithm. The data communication between the host computer and 

the FPGA board is realized using the USB-UART serial interface. Unlike conventional I/O 

interfaces, which use standard interfaces like RS-232, PCI express for data streaming, we 

use a relatively flexible USB-UART bridge interface between host and device. The USB-

UART interface offers a plug-and-play device connectivity solution (i.e., connection 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3: Top-level architecture of online-classification framework. The 

blue filled box represents host computer for streaming HSIs and 

receiving labels, the FPGA board consists of modules and the 

green box represents the reconfigurable hardware modules for 

implementing the MSVM algorithm. 
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through USB port) for UART devices. The advanced extensible interface (AXI-lite) is used 

to link the modules on the FPGA board (see Figure 3.3). 

The advantage of an offline training step before hardware architecture design is to have 

a basis for making a projection of memory usage and independent operations required for 

the online classification task. Under these considerations, we have exploited the inherent 

parallelism of MSVM for constructing an efficient and computationally coherent streaming 

architecture. The stream processing architecture performs operations synchronously 

without explicitly managing the memory allocations and yields high throughput. As 

mentioned earlier, a real-time processing approach that implements pixel vector-level 

streaming classification has been adopted to enhance our architecture's computing 

performance and make it compatible with the systems using BIP data format for image 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4: Streaming pipelining architecture of the MSVM algorithm, where 

P represents the number of BCs. Note that pixel vectors and 

parameters are streamed synchronously from left to right and top 

to bottom, respectively. 
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acquisition (Du and Nekovei, 2009). In the proposed technique, the pixel vector (𝐳) is 

streamed simultaneously to all the BCs in series fashion i.e., pixel-by-pixel.  

As shown in Figure 3.4, the proposed architecture consists of four main modules: the 

memory, the processing elements (PEs), the control unit, and the decision function module. 

First, the memory module comprises a group of read-only memories (ROMs) to store the 

MSVM model parameters obtained from offline training. Second, a homogenous network 

of PEs consisting of a vector unit (VU) and a scalar unit (SU) are responsible for computing 

vector and scalar operations in each BCs. Each PE has its data and instruction memory to 

store partial results, thereby facilitating stream processing and pipeline parallelism (see 

Figure 3.4). Third, a control unit constitutes the deterministic finite state machine (FSM) 

to transmit essential control signals like address lines, reset (RST) and enable (EN) to 

synchronize the internal processing flow. Finally, a decision function 𝐷 is implemented 

using the conditional constructs designed in the M-Code block from the XSG library (Feist, 

2012; Xilinx User Guide, 2016). The possible outcomes of each BC in a 5-class MSVM 

classifier and their corresponding class labels (C1 to C5) are shown in Table 3.1. Similarly, 

the BC outcomes given in Table 3.1 are also valid for  <5 MSVM classifiers associated 

with class labels (C1 to C ).  The reconfigurable module implementing a BC kernel 

consists of five modules: the first module is a vector multiplication; the second is an adder; 

the third and fourth modules are storage components (such as ROMs) of weight vector and 

bias, and the last module is a comparator which is responsible for binary decision 𝑓.  

Table 3.1: Entries for decision function 𝐷 and their class labels for a 5-class   

classification problem 

           BC 

Class 
1v2 1v3 1v4 1v5 2v3 2v4 2v5 3v4 3v5 4v5 

C    -1 1 1 1 1 X X X X X X 

C    -2 -1 X X X 1 1 1 X X X 

C    -3 X -1 X X -1 X X 1 1 X 

C    -4 X X -1 X X -1 X -1 X 1 

C    -5 X X X -1 X X -1 X -1 -1 

   Note: X-represents either label ‘1’ or ‘-1’ 
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As shown in Figure 3.5, the BC linear kernel or PE structure comprises two processing 

stages in classifying a pixel vector to a binary label. The first stage of the BC linear kernel 

consists of VU, which performs dot products of weight vector 𝐰 and test pixel vector 𝐳. A 

second stage includes a SU, which is responsible for the addition of bias and scalar value 

generated from a VU, and finally, the value is pipelined to the comparator. Mathematically, 

the dot product or inner product can be divided into a series of operations to exploit the 

hardware parallelism in streaming architecture. The first operation is based on Hadamard 

product  𝐰 ∘ 𝐳  which is an element-wise multiplication of two vectors given by 

〈𝐰 𝐳〉 = 𝐰T𝐳 = w  z + ⋯+ w𝑑  z𝑑 

= ∑w𝑖  z𝑖 = ∑[w ∘ z]𝑖

𝑑

𝑖  

𝑑

𝑖  

 

   [w ∘ z]𝑖 = [w]𝑖[z]𝑖 ∀  ≤ 𝑖 ≤  . 

(3.5) 

The next operation is adding the Hadamard products using the accumulator block from 

XSG, as shown in Figure 3.5. Another important aspect of our hardware architecture is the 

use of pipelined arithmetic modules from the XSG library by adding pipeline registers to 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5: Processing element (PE) structure for 𝑖𝑡ℎ BC to compute a decision 

function 𝑓. 
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the outputs in each PEs. These overhead registers are added to shorten the critical paths in 

the designed circuitry based on timing closure. Even though these registers initially 

increase the latency, they help process the data in the pipelined parallelism fashion for a 

given stream, which increases the throughput of the design. In the second stage of PE, SU 

is used to add the scalar values produced from the VU and bias. 

For any given input 𝐳, the streaming sequence is {z    z𝑑} and the corresponding 

sequence of weights (as a stream of weights) are {w    w𝑑} in respective BCs. A VU 

computes the inner product as a sequence defined by ∑ w𝑖𝑧𝑖
𝑑
𝑖  . The SU performs addition 

of the output produced from a VU and bias of respective BC as (∑ w𝑖z𝑖
𝑑
𝑖  ) + 𝑏. Then the 

overall result is converted by the comparator to a binary output 𝑓P  ∈ {−  + }. Each BC 

provides a binary value to decision function 𝐷 and which further maps to set 𝑦. Several 

offline MATLAB-Simulink simulations were conducted to deduce the optimum number of 

bit representations required for our FPGA-based MSVM implementations. Accordingly, 

the MSVM architecture is configured with a 32-bit signed fixed-point data format with one 

sign bit, 24 fractional bits, and seven integer bits to minimize the overflow generated in 

calculating the decision function (see Figure 3.5). With these considerations, we have 

performed timing closure in XSG to meet the timing requirements. After successfully 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6: JTAG based HW/SW co-simulation for verifying FPGA-based 

hardware logic 
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satisfying all timing constraints, the maximum operating frequency of the design 𝐹𝑚𝑎𝑥  is 

calculated (Zhang, 2017).  

The testing of the proposed FPGA design is achieved by using the hardware-in-loop 

(HIL) approach in MATLAB/Simulink via XSG, which is used for I/O data communication 

with FPGA using JTAG based co-simulation interface, as shown in Figure 3.6. The XSG 

provides a HIL simulation that enables rapid prototyping by evaluating the proposed design 

in a real-time environment. Finally, we have verified the hardware and software 

functionality of the design using JTAG based HW/SW co-simulation (Feist, 2012; Xilinx 

User Guide, 2016). 

3.5 Experimental Results and Discussion 

The hardware architecture described in Section 3.3 has been implemented on an Artix-7 

35T FPGA Arty Evaluation kit using XSG to the specifications of the MSVM algorithm. 

The 35T board provides features common to many embedded processing systems, 

including 256 MB DDR3L SDRAM memory, 210 I/O ports, other expansion interfaces. 

The XC7A35T FPGA has a total of 5200 logic slices, 20800 look-up tables (LUTs), and 

41600 slice flip-flops. In addition, the FPGA also includes some heterogeneous resources 

such as 90 DSP slices and 1800 Kbits block RAMs (BRAMs). 

3.5.1 MSVM classification accuracy assessment 

In order to assess the classification performance of the MSVM algorithm mapped on 

FPGA, all four hyperspectral imageries were classified using an FPGA board, as shown in 

Figure 3.7. Note that the obtained classified images [see Figure 3.7(a), 3.7(b), 3.7(c), 

3.7(d)] illustrate that the MSVM classifier has also mapped the untrained classes to one of 

the trained classes which are closer to the labels from 𝑦. The thematic accuracy of the 

implemented hardware-based MSVM classifier is validated using the PA of each class (C𝑖, 

𝑖 =      ) (see Equation (3.6)) and OA (see Equation (3.7)) derived from the error matrix 

or confusion matrix. Overall results in Table 3.2 indicate a successful estimation of class 
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labels using the proposed implementation with a minimum statistical confidence interval 

at speed commensurate with image acquisition rates.  

𝑃𝐴 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒  𝑝𝑖𝑥𝑒𝑙𝑠 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠 C𝑖

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑝𝑖𝑥𝑒𝑙𝑠 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠 C𝑖
 (3.6) 

𝑂𝐴 =
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒  𝑝𝑖𝑥𝑒𝑙𝑠 𝑜𝑓 𝑎𝑙𝑙 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑝𝑖𝑥𝑒𝑙𝑠 𝑜𝑓 𝑎𝑙𝑙 𝑐𝑙𝑎𝑠𝑠𝑒𝑠
 (3.7) 
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Figure 3.7: Training set reference maps for learning and obtained classified 

images of (a) Pavia University, (b) AVIRIS-NG, (c) Drone, and 

(d) Terrestrial. 
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3.5.2 Sensitivity analysis of OA 

The OAs of the classified HSIs listed in Table 3.2 are similar to the MATLAB-based 

software implementation and are acceptable for many classification applications. However, 

the accuracy performance may vary due to various factors, as listed below.  

3.5.2.1 Training set size 

Figure 3.8(a) shows that the OAs of AVIRIS-NG and Cubert imageries are marginally 

stable after 10% of training data size, except for Pavia University. This trend is due to the 

Table 3.2: Class-wise classification accuracy obtained using proposed FPGA-

based MSVM implementation 

 Pavia University Ahmedabad Drone Terrestrial 

Classes PA (%) Classes PA (%) Classes PA (%) Classes PA (%) 

C
la

ss
-w

is
e
 

a
c
c
u

r
a
cy

 

Asphalt 98.85 Building 93.05 Eggplant 99.84 Cabbage 98.64 

Meadows 98.03 Road 93.05 Cabbage 99.76 Soil 99.61 

Gravel 91.67 Soil 99.25 Soil 99.91 Pipe 91.76 

Trees 91.17 Vegetation 99.43 C4 - C4 - 

Metal 

sheets 
99.68 Water 99.92 C5 - C5 

- 

 OA (%) 97.12 OA (%) 98.09 OA (%) 99.86 OA (%) 99.33 

   Note: PA-Producer’s accuracy; OA-Overall accuracy 

      

                                                                                      
 

               (a)                                                                 (b) 

    Figure 3.8: (a) OAs of MSVM over different percentages of training dataset 

size for the datasets considered; (b) CVAs obtained in relation 

to six different values of 𝐶 parameters for four different 

datasets. 
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consideration of large ground truth reference samples of AVIRIS-NG and Cubert imageries 

[see Figures 3.1(b), 3.7(b), 3.1(c), and 3.7(c)] when compared to Pavia University HSI.  

3.5.2.2 𝑪-parameter tuning 

In Figure 3.8(b), the CVA increased significantly due to a smaller-margin hyperplane 

formulated for larger values of 𝐶 = {   00  0   0   05  07} and then it became 

insensitive for further increase in 𝐶 (see Sections 2.2.1 and 3.4.1). The optimal 𝐶 controls 

the tradeoff between large margin and small training error. Therefore, the grid searching 

mechanism is beneficial in selecting the optimal 𝐶 for generalizing a classifier to out-of-

sample data compared to the single choice of 𝐶 parameter, as the outliers in the data may 

vary. 

3.5.2.3 Normalization 

A pre-processing step such as normalization is used to enhance and generalize the 

performance of a classifier in terms of classification accuracy. In the current methodology, 

we have considered the min-max normalization technique to scale the HSI data between 

[0,1], indicating spectral reflectance values ranging from 0 (minimum) to 1(maximum). 

The data normalization is performed offline in MATLAB on both training and testing 

datasets of HSIs. The normalized HSI data is used for offline training to obtain a model 

and then use the trained model to predict the testing dataset online (e.g., FPGA). The min-

max normalization of data helps in controlling the overflow errors in arithmetic operations 

like multiplication and accumulation. 

3.5.2.4. Number representation 

In this paper, the hardware implementations are designed for fixed-point operations in 

which the number representation is crucial for determining the results (see Section 3.4.2). 

In many cases, the selection of number representation plays a significant role and may even 

result in errors because of the results quantization effects and overflow truncations. 
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3.5.3 Real time performance evaluation of FPGA based MSVM 

implementation 

The performance evaluation of a real-time computing platform typically includes an 

estimation of its resource usage, throughput, latency, and processing time (Basterretxea et 

al., 2016). As mentioned before, the FPGA design was implemented on the Artix-7 FPGA 

35T Evaluation Kit. The XC7A35T-1CSG324 programmable fabric is used to design 

MSVM under several constraints like achieving expected operating frequency with 

optimum utilization of the hardware resources. As shown in Table 3.3, four different 

implementations are compared based on their hardware fabric usage in our experiment. For 

the ROSIS and AVIRIS-NG imagery, we constructed 10 BCs in parallel to form the 5-class 

MSVM. For the drone-mounted and ground-based Cubert implementations, the number is 

3 to create a 3-class classifier. Moreover, according to the number of spectral bands and 

the classes trained, different resources are used by the four implementations. As a result, 

the percentage of hardware utilization increases as spectral bands and classes increase. As 

shown in Table 3.3, images acquired using the Cubert sensor consumed similar resource 

units. The maximum operating frequency of each implementation for the considered 

imagery is also given in Table 3.3. The results demonstrate that all four implementations 

can operate with a maximum frequency  𝐹𝑚𝑎𝑥  of more than 100 MHz. It is important to 

emphasize that the performance of a computing system is directly related to the operating 

Table 3.3: Summary of resource utilization for the proposed FPGA-based 

implementation of the MSVM algorithm 

Components Available 

Pavia 

University 
Ahmedabad Drone Terrestrial 

Utilization Utilization Utilization Utilization 

BRAMs 50 7 (14%) 7 (14%) 3.5 (7%) 3.5 (7%) 

DSPs 90 40 (44.44%) 40 (44.44%) 12 (13.33%) 12 (13.33%) 

LUTs 20800 1874 (9%) 1875 (9.01%) 1185 (5.69%) 1185 (5.69%) 

Registers 41600 2056 (4.94%) 2058 (4.95%) 1370 (3.29%) 1370 (3.29%) 

Maximum operating 

frequency (MHz) 
104.61 103.41 194.43 194.43 
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clock frequency, more operations per second are computed for a higher clock frequency 

which results in higher performance. 

    We designed a pipeline-based architectural framework to achieve low-latency and high-

throughput rates, which are essential parameters for real-time system realization. The 

results are shown in Table 3.4. The proposed design leads to a latency of about ( +   ) 

clock cycles for a  -dimensional pixel vector. It achieves a per-pixel vector classification 

or per-pixel vector processing time of 1.09 𝜇𝑠 and 3.51 𝜇𝑠 (shown in Table 3.4), against 

the per-pixel-vector scanning time of 31.5 𝜇𝑠, 15.6 𝜇𝑠 for ROSIS and AVIRIS-NG 

instruments to achieve real-time performance, respectively (Zebin Wu et al., 2015; Thorpe 

et al., 2016). As a result, the proposed FPGA-based streaming pipeline architecture of 

MSVM performs classification strictly in real-time. Since the spectral images acquired 

using the Cubert sensor have a post-processing stage such as image fusion (Yue et al., 

2017), the obtained results in Table 3.4 offer a compelling computing performance for 

drone and terrestrial-based imagery. As shown in Table 3.4, the metric for throughput is 

expressed as the pixel vector per second and data rate. The results shown in Table 3.4 

indicate that the throughput and latency performance primarily depend on the number of 

spectral channels and the BCs. 

   In real-time classification based applications, short predicting time is essential (Chang, 

Ren and Chiang, 2001; Du and Nekovei, 2009). When a  -class classification problem has 

a large  , the one-against-one method has to calculate P decision function 𝑓 values for each 

Table 3.4: Real-time performance of the proposed MSVM design for the 

considered hyperspectral imageries 

Hyperspectral  

images 

Latency Throughput Time 
On-chip 

power 

(Watts) 

Time 

(𝛍𝐬/pixel 

vectors) 

Pixel 

vectors/s 

Data 

rate 

(MB/s) 

MATLAB 

(s) 

FPGA 

(s) 
Speedup 

Pavia University 1.09 909,652 140 7.74 0.20 38.7 0.156 

Ahmedabad 3.51 284,876 174 10.95 0.77 14.2 0.156 

Drone 0.77 1,287,615 268 20.29 0.71 28.6 0.096 

Terrestrial 0.77 1,287,615 268 20.29 0.71 28.6 0.096 
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datum or pixel vector, rendering sizeable computational complexity, which leads to 

considerable predicting time. Considering this, we have shortened the predicting time by P 

folds by implementing all BCs in parallel. An interesting feature of the proposed design is 

that it can be scaled without significantly increasing the delay. Although the current Arty 

35T FPGA platform is operating at 100 MHz clock, which is approximately 24 times lesser 

than the operating frequency of the computer, it still presents a higher performance (at least 

ten times more) than the same block implemented in software as shown in Table 3.4. 

   Real-time processing requires computation time equal to or less than the scan time of the 

sensor or the time at which the data arrives at the input of the processing system. For 

example, the time required to acquire the considered scene for the ROSIS sensor (i.e., 

610×340 pixels collected over the Pavia University area) is about 6.5s, and the AVIRIS-

NG sensor is about 3.5s (for 400×565 samples acquired over Ahmedabad city). These 

sensor-specific scanning times introduce a computing time required for the ROSIS sensor 

scene in less than 6.5s and the AVIRIS-NG sensor scene in less than 3.5s to achieve real-

time performance. Thus, our design has classified approximately in 0.20s and 0.77s for 

ROSIS and AVIRIS-NG, respectively. As shown in Table 3.4, for all the considered 

hyperspectral imagery, the FPGA implementation can process and classify in real-time 

specifications and offers a significant speedup compared to the MATLAB-based LIBSVM 

software version. The processing time depends on the ratio of clock cycles and 𝐹𝑚𝑎𝑥 which 

are achieved for the synthesized design in the XSG tool. The power consumed by the on-

chip FPGA device (XC7A35T) is estimated using the Xilinx Vivado tool for each imagery 

(see Table 3.4). Results indicate that power usage mainly depends on the number of BCs 

in the MSVM. 

3.6 Chapter Conclusions 

This chapter introduced a low-complexity real-time FPGA design and implementation of 

the MSVM algorithm using a model-based rapid prototyping design approach. In 

particular, we have presented a comprehensive analysis of both the learning and 

classification stages, and experiments were performed on four different hyperspectral 
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datasets acquired from diverse platforms. The experimental results, conducted on a newer 

generation of low-power Artix-7 Arty 35T board, report a maximum operating frequency 

of more than 100 MHz for our proposed design. Finally, the reported results indicate an 

apparent increase in speedup over the software version and satisfy strict real-time 

constraints for the imaging sensors considered in this experiment. As future work, we will 

develop and integrate the pre-processing stage and evaluate the processing times. The 

present study provided the scope and capabilities of FPGAs in providing real-time 

solutions for airborne and ground-based ultra-high resolution hyperspectral imagery at the 

native spectral resolution.  
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CHAPTER 4 

SUPERVISED CASCADED CLASSIFIER SYSTEM 

(SC2S) FOR OPEN-SET IMAGE CLASSIFICATION IN 

REAL-WORLD ENVIRONMENTS 

Prelude: This chapter proposes a new supervised classification algorithm specifically 

designed to provide robust and stable accuracy performance in both static and dynamic 

environments in real-world tasks. The performance of the proposed algorithm is compared 

with other widely used existing state-of-the-art algorithms with and without reject-option. 

This chapter also presents an efficient strategy to design an experimental setup consisting 

of different real-world classification scenarios to evaluate multispectral and hyperspectral 

imagery classification performance. Experiments carried out on four multi-sensor, and 

multi-platform images show that the proposed technique successfully offers superior 

performance even in cases of a large number of UCs. 

4.1 Introduction2 

Classification is one of the standard techniques of analysis to mine the information present 

in remotely sensed optical images such as color images, MSIs and HSIs. It is a widely 

researched and used technique because of its potential to provide thematic information to 

a broad spectrum of practical applications like environmental study (Liu and Han, 2017), 

weather analysis (Piñeros, Ritchie and Tyo, 2011), resource exploration (Adep, shetty and 

 
2 This chapter is published as an article in IEEE Geoscience and Remote Sensing Letters, vol. 18, 

no. 3, pp. 421-425, March 2021, doi: 10.1109/LGRS.2020.2980186, with the title: “A Novel 

Supervised Cascaded Classifier System (SC²S) for Robust Remote Sensing Image Classification”. 

Authors: Dubacharla Gyaneshwar and Rama Rao Nidamanuri. 
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Ramesh, 2017), LULC change investigation, machine vision, etc (Khan et al., 2018). 

Several different classification techniques are available in the literature that has proven 

successful in diverse fields, particularly in remote sensing (Mather and Tso, 2016; Ghamisi 

et al., 2017). Some of the notable classification techniques such as SVM, convolution 

neural network (CNN), and more are adopted from prominent paradigms like machine 

learning, deep learning, signal, and information theory. Yet, there is still a more significant 

requirement for consistent and trustworthy classification performance in real-world 

environments, especially for the HSIs. The inconsistent and sometimes unreliable 

performance of classification is due to the presence of various uncertainties in a scene of 

studies like incomplete a priori knowledge about the test site, inevitable presence of 

spectral classes, noise, etc. Because of these uncertainties, most of the existing techniques 

are known to produce substantial omission or commission errors in the classification 

(Muzzolini, Yang and Pierson, 1998; Mantero, Moser and Serpico, 2005; Jiang et al., 

2018). The solution to this ubiquitous problem continues to be a challenge that needs to be 

addressed to deploy the classification methods in real-world application tasks.  

    The omission or commission errors produced by the classification techniques are mainly 

due to uncertainties like OoD or UC samples in the scene being observed. Examples of 

UCs include untrained or unseen samples during training, undesired spectral classes, and 

within-class samples with substantial variation in surface reflectance due to varying 

illumination, shadow, etc (Foody and Atkinson, 2002; De Rosa, Mensink and Caputo, 

2016; Júnior et al., 2017). The presence of UCs in images causes the classifier to produce 

undetected false-known or false-positive errors during classification and often yields high-

confidence class prediction results even for random noise. For example, we train a classifier 

with an urban feature training set and anticipate future test instances during classification 

only from urban built-up settings. But in the real world, this is not the scenario; there also 

exists a scenario where many UCs are present in the test data. In such cases, the trained 

classification models are susceptible to produce errors for UCs by labeling them as one of 

the ID pre-trained information class labels, i.e., KCs. This case is due to the forced 

assignment problem of classifiers that arises from the assumption made during the training 

stage, i.e., the training and testing instances will be from the same ID. And this scenario of 
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a classification problem where the training and test instance is from the same ID is a closed-

set classification problem. 

    On the contrary, an open-set classification problem has different training and test 

instances. In fact, a practical, real-world classification environment is often an open-set 

setting. Therefore, researchers have a great desire to develop classification algorithms 

capable of performing stable in any given application environment. 

    To deal with the problem of UCs, we propose a novel classification algorithm named 

supervised cascaded classifier system (SC2S) that is developed by joining two supervised 

learning approaches in a cascade fashion. The two interconnected stages in SC2S are the 

supervised novelty classifier (SNC) and the rule-based supervised classifier (RSC). The 

SNC is the first stage in SC2S responsible for grouping the incoming test instances as UC 

if there are no reliable training samples in the training stage. Otherwise, the test instance is 

given a KC label. In the second stage of SC2S, RSC uses a decision rule-set to label the test 

instance as UC or as one of the KC labels. Stage-II (RSC) rule-set is a function of the 

predicted label from Stage-I (SNC). In such a manner, the proposed cascading arrangement 

of diverse supervised classification models in the SC2S algorithm unifies novelty detection 

and classification objectives. Thus, SC2S can discriminate the KCs and UCs with increased 

accuracy and minimize the false-positive errors of overconfident predictions by alleviating 

the forced assignment problem. 

    A unique class label (i.e., referred to as class-0) is introduced in SC2S to group all the 

UC test instances during classification. The class-0 label represents the availability of 

reject-option for UCs in SC2S for not allowing the UC instances for supervised 

classification in RSC. So, this reject-option for UC instances in classification is particularly 

advantageous in open-set classification tasks to ensure reliability, safety, and security 

rather than producing inaccurate class predictions (Júnior et al., 2017). There are several 

research attempts made in the past to tackle the UC problems for classification using 

MSIs/HSIs, but the reported methods are complex and may produce suboptimal results if 

the settings are not correctly configured (Mantero, Moser and Serpico, 2005; Condessa, 
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Bioucas-Dias and Kovačević, 2016). But, the proposed SC2S method is simple, easy to use, 

and can be enhanced to user desired specifications for providing superior classification 

performance for different LULC classes. 

4.2 Problem Statement 

A complete MSI/HSI cube with  -spectral channels can be represented as an array of 𝑁 

pixel vectors  𝐱𝑖 ∈ ℝ𝑑   𝑖 =     𝑁  known as a data matrix, say 𝑋 = [𝐱  𝐱  𝐱𝑁] ∈

ℝ𝑑×𝑁. For each pixel vector, there exists a corresponding discrete class label 𝑦 that belong 

to the set of all possible classes 𝑦𝑖
Ψ ∈ {    𝑐} (where 𝑐 is the actual number of 

information classes) present in the given scene. However, knowing the full extent of 

information classes in the test site can be difficult, expensive, and is not always possible 

(Foody and Atkinson, 2002; Bendale and Boult, 2015; Júnior et al., 2017). In such cases, 

information about only a subset of classes or classes of interest is only available.  

    Let 𝑦𝑖
Ω ∈ {    𝑚} be a set of 𝑚 KCs  𝑚 < 𝑐  and 𝑦𝑖

℧ = {𝑦 ∈ 𝑦𝑖
Ψ|𝑦 ∉ 𝑦𝑖

Ω} be a set 

of  𝑐 − 𝑚  UCs which are the absolute complement of 𝑦𝑖
Ω (i.e., 𝑦𝑖

Ω ∪ 𝑦𝑖
℧ = ∅), then we 

can define 𝑦𝑖
Ψ = 𝑦𝑖

Ω ∪ 𝑦𝑖
℧. We assume that the classifier is trained with a suitable set of 

representative training data that belong to the KCs. Our proposed SC2S method aims to 

reduce the false-known predictions by classifying each pixel vector to one of the KCs (𝑦𝑖
Ω), 

otherwise as a UC (𝑦𝑖
℧).  

4.3 Datasets Used 

We used four different sources of multi-platform and multi-sensor remote sensing images. 

One HSI each from AVIRIS, Cubert UHD 185s, ROSIS-3, and one MSI from Sentinel-2A 

(S2A) sensor. The three outdoor images with different spatial and spectral resolutions are 

covering several land cover categories and sites. These remote sensing datasets were 

chosen to form a complete and non-trivial experimental setup to assess the generality of 

the methods. In order to measure the performance of SC2S algorithms quantitatively, we 

manually interpreted and collected the ground truth reference samples for Cubert and S2A 
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images. Three-band image composites and ground truth maps of the three images are 

shown in Figure 4.1. 

Salinas image: The airborne Salinas HSI was acquired by an AVIRIS sensor flown 

at low altitude over the city of Greenfield in the Salinas Valley in California, United States 

of America (USA) on 9th October 1998. This data comprising of 5  ×   7 spatial pixels, 

each having a fine spatial resolution of 3.7 m and 204 spectral bands (after discarding 20 
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Figure 4.1: (a) RGB display of Salinas HSI and its ground truth reference 

map; (b) RGB display of Cubert HSI and its ground truth 

reference map; (c) RGB display of PU HSI and its ground truth 

reference map (d) FCC display of S2A MSI and its ground truth 

reference map. 

Broccoli weeds 1

Broccoli weeds 2

Fallow Plow

Fallow smooth

Stubble

Celery

Grapes

Soil

Corn

Soyabean-notill

Lettuce 4 week

Lettuce 5 week

Lettuce 6 week

Lettuce 7 week

Vineyard

Vineyard trellis

Background

Cabbage

Pipe

Soil

Shadow

Background

Asphalt

Meadows

Gravel

Trees

Metal sheets

Bare soil

Bitumen

Bricks

Shadows

RBG

Asphalt

Meadows

Gravel

Trees

Metal sheets

Bare soil

Bitumen

Bricks

Shadow

Background

Asphalt

Meadows

Gravel

Trees

Metal sheets

Bare soil

Bitumen

Bricks

Shadow

Background

RBG

Asphalt

Meadows

Gravel

Trees

Metal sheets

Bare soil

Bitumen

Bricks

Shadow

Background

Asphalt

Meadows

Gravel

Trees

Metal sheets

Bare soil

Bitumen

Bricks

Shadow

Background

RBG

Asphalt

Meadows

Gravel

Trees

Metal sheets

Bare soil

Bitumen

Bricks

Shadow

Background

Asphalt

Meadows

Gravel

Trees

Metal sheets

Bare soil

Bitumen

Bricks

Shadow

Background

Asphalt

Meadows

Gravel

Trees

Metal sheets

Bare soil

Bitumen

Bricks

Shadows

Background

Asphalt

Meadows

Gravel

Trees

Metal sheets

Bare soil

Bitumen

Bricks

Shadows

RBG

Asphalt

Meadows

Gravel

Trees

Metal sheets

Bare soil

Bitumen

Bricks

Shadow

Background

Asphalt

Meadows

Gravel

Trees

Metal sheets

Bare soil

Bitumen

Bricks

Shadow

Background

RBG

Asphalt

Meadows

Gravel

Trees

Metal sheets

Bare soil

Bitumen

Bricks

Shadow

Background

Asphalt

Meadows

Gravel

Trees

Metal sheets

Bare soil

Bitumen

Bricks

Shadow

Background

RBG

Asphalt

Meadows

Gravel

Trees

Metal sheets

Bare soil

Bitumen

Bricks

Shadow

Background

Asphalt

Meadows

Gravel

Trees

Metal sheets

Bare soil

Bitumen

Bricks

Shadow

Background

Asphalt

Meadows

Gravel

Trees

Metal sheets

Bare soil

Bitumen

Bricks

Shadows

Background

Asphalt

Meadows

Gravel

Trees

Metal sheets

Bare soil

Bitumen

Bricks

Shadows

RBG

Asphalt

Meadows

Gravel

Trees

Metal sheets

Bare soil

Bitumen

Bricks

Shadow

Background

Asphalt

Meadows

Gravel

Trees

Metal sheets

Bare soil

Bitumen

Bricks

Shadow

Background

RBG

Asphalt

Meadows

Gravel

Trees

Metal sheets

Bare soil

Bitumen

Bricks

Shadow

Background

Asphalt

Meadows

Gravel

Trees

Metal sheets

Bare soil

Bitumen

Bricks

Shadow

Background

RBG

Asphalt

Meadows

Gravel

Trees

Metal sheets

Bare soil

Bitumen

Bricks

Shadow

Background

Asphalt

Meadows

Gravel

Trees

Metal sheets

Bare soil

Bitumen

Bricks

Shadow

Background

Asphalt

Meadows

Gravel

Trees

Metal sheets

Bare soil

Bitumen

Bricks

Shadows

Background

Water

Residential

Soil

Vegetation

Background

Water

Residential

Soil

Vegetation

Background

Water

Residential

Soil

Vegetation

Background



 

60 

 

water absorption bands), was collected in the spectral range of 0.36 to 2.5 𝜇m with a 

nominal spectral resolution of 0.04 𝜇m. The image includes 16 information classes of 

vegetables, vineyard fields, bare soils, and ground. A total number of 54129 reference 

ground truth pixels are available for evaluation. Figure 4.1(a) shows the true color 

composition and ground truth reference map for the Salinas HSI image. 

Cubert image: The terrestrial Cubert HSI was acquired over the agriculture crops 

grown in the experimental plots in the University of Agricultural Sciences, Bengaluru, 

India, on 5th April 2017. This dataset was captured by the Cubert UHD 185s sensor 

mounted on the ground-based tripod capturing the top view of the cabbage crop. The 

Cubert image has 1000×1000 spatial dimensions with an ultra-high spatial resolution of 2 

mm, and a total of 139 spectral bands were collected in the spectral range 0.45 to 0.95 𝜇m 

with a spectral resolution of 0.08 𝜇m. The predominant LULC categories in the study site 

are cabbage crop, soil, pipe, and shadow. Figure 4.1(b) shows the RGB image and ground 

truth reference map of the Terrestrial image.  

Pavia University (PU) image: The airborne PU HSI is provided by Prof. Paolo 

Gamba from the TRSL, University of Pavia, Italy. The ROSIS dataset was acquired during 

a flight campaign by ROSIS-03 sensor, in July 2001, over the University of Pavia, Italy, 

under cloud-free sky conditions. This data comprising of 6 0 × 340 spatial pixels, each 

having a high-spatial resolution of 1.3 m and 103 spectral bands (after removing the water 

absorption and bad bands) were collected in the spectral range 0.43 to 0.86 𝜇m with a 

nominal spectral resolution of 0.04 𝜇m. There are 42776 ground-truth reference samples 

available for nine information LULC types. Figure 4.1(c) shows the true color composition 

image and ground truth reference map for the PU image. 

S2A image: The spaceborne S2A image was acquired by the Sentinel-2A satellite 

sensor on 20th March 2018. This image is covering the suburban area of the Mudumalai 

region, India. This image consists of 711×742 spatial pixels with a spatial resolution of 10 

m and has ten spectral bands in the wavelength range 0.04 to 2.19 𝜇m with a varying 

spectral resolution. Figure 4.2(d) displays the false-color composite (FCC) of the S2A 



 

61 

 

image and its ground truth reference map. Figure 4.1(d) shows that the S2A MSI contains 

four dominant information classes: water, residential, soil, and vegetation. 

4.4 Methodology 

    This section introduces and discusses in detail the mechanism of the proposed SC2S 

algorithm. 

4.4.1 Supervised cascaded classifier system (SC2S)  

The SC2S approach combines the idea of a novelty classifier, e.g., one-class SVM 

(OCSVM), with the rule-based supervised classifier and is aimed at minimizing the false-

known predictions (see in Figure 4.2 and Figure 4.3). Our key idea behind cascading 

different types of predictive models is to achieve a diversity of classification models to 

boost the overall accuracy. In addition, we have introduced an optimum reject decision rule 

       

(a) 

 

(b) 

Figure 4.2: (a) Top-level architecture diagram of the proposed pixel-level SC2S 

method for the 𝑖𝑡ℎ test pixel vector 𝐳𝒊. (b) Concept diagram of 

feature space ℱ partitioning into decision regions by (Left) SVM, 

(Middle) OCSVM, and (Right) SC2S (OCSVM+SVM) for a 2-

KC classification problem. 
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and an extra class label 𝑦𝑖
℧ ∈ {0} for UC pixel vectors which are sufficiently different from 

the training pattern. Therefore, in this paper, we precisely define the set of all possible 

classes as 𝑦𝑖
Ψ ∈ {0     𝑚} in any given scene. Thus, the SC2S feature space is partitioned 

into 𝑚 +   regions for 𝑚-KCs, as illustrated in Figure 4.2(b). The abovementioned reasons 

make the SC2S classifier reliable and robust among other classification algorithms when 

the classes are not well sampled during the training stage.  

    The SC2S framework can be generalized to the problem of determining ID or KC and 

OoD or UC samples. The SC2S method has two steps to using the classifier, namely, 

training and classification. During training, a straightforward learning scheme is proposed 

to construct two optimal separating hyperplanes of SC2S (see Figure 4.2(b)) from a given 

training set  = { 𝐱𝑖 𝑦𝑖
Ω }𝑖  

𝑛 , one from the supervised novelty classifier and another from 

the supervised classifier. In the classification step, a two-stage classification approach for 

prediction is used. 

 

 
  

Figure 4.3: A detailed illustration of general workflow of SC2S algorithmic 

framework and its two sub-stages using flowchart diagram.  
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4.4.1.1. Stage I: SNC 

The designed SC2S method uses a supervised novelty classifier as the base classifier for 

mapping ID and OoD samples (see Figure 4.2(a) and Figure 4.3). Supervised novelty 

classifier like OCSVM is one of the widely used techniques for anomaly detection, mainly 

due to their low implementation complexity and computation time (Mũnoz-Marí et al., 

2010). Our system uses the OCSVM method to detect novel or anomalous future test data 

by sorting them as inliers (i.e., ID) or outliers (i.e., OoD).  

    The key idea in our OCSVM training approach is to consider all the available training 

data as one-categorical class referred to as inliers, or KCs say 𝑦𝑖
Ω = {C𝑖    C𝑗} ∈ {+ } 

(where 𝑖 ≠ 𝑗) to be a positive class. In OCSVM classification, inliers are labeled ‘+1’, 

while outliers or UCs are labeled ‘-1’ (Chang and Lin, 2011). The learning rate and 

accuracy of the OCSVM method are defined by two hyperparameters: 𝜈 ∈  0  ] (upper 

bound on the fraction of outliers in  ), and γ (width of the Gaussian curve). The optimum 

values of hyperparameters are derived from the annotated training data by performing a 

grid search using CV. The obtained optimal hyperparameter values are then used to 

formulate the classification model of OCSVM (Schölkopf et al., 2000). For any given test 

pixel vector 𝐳, a supervised novelty classifier produces a decision value 𝑓𝑂𝑆 ∈ {−  + } 

using the discriminant function (𝑓𝑂𝑆). 

4.4.1.2 Stage II: RSC 

In the second stage of SC2S, we use a rule-based supervised classifier that uses a decision 

rule for mapping. Unlike Stage-I, the training procedure in Stage-II follows conventional 

supervised learning. As shown in Figure 4.2(a), Stage-I is cascaded with Stage-II, building 

an interconnected system, where the output of Stage-I is the input to Stage-II. There are 

two inputs to the rule-based supervised classifier, input test pixel vector (𝐳) and the 

classified label (𝑓𝑂𝑆) from OCSVM (Stage-I). The output of the rule-based supervised 

classifier 𝐷 is based on a rule-set for class prediction. The rule-set states that, if 𝑓𝑂𝑆 is equal 

to ‘ ’, then the pixel vector 𝐳 is accepted for classification using supervised classifier 

otherwise rejected for classification and labeled as ‘0’. For any given test pixel vector 𝐳, a 
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rule-based supervised classifier with a discriminant function 𝐷 ∈ 𝑦Ψ produces a decision 

value using the optimum decision rule of the following form:  

         Rule: 

(4.1)         𝐴𝑠𝑠𝑖𝑔𝑛 𝐷 𝐳 → 𝑓𝑆 𝐳        𝑖𝑓𝑓𝑂𝑆 𝐳 𝐱 𝛂 𝑏 =   

        𝑂𝑡ℎ𝑒𝑟 𝑖𝑠𝑒 𝐷 𝐳 → 0  

where “0” represent anomaly class in test data and 𝑓𝑆 𝐳   ∈ 𝑦Ω is the discriminant 

function of a supervised classifier with a set of 𝑛-input parameters  = {𝜃     𝜃𝑛}. 

4.5 Design of Experimental Setup for Various Real-World 

Classification Case Studies 

In this section, we describe an experimental setup designed exclusively to assess the 

effectiveness of the proposed SC2S algorithm. The experimental setup consists of three 

different case studies, each with several test cases of classification scenarios of a varying 

number of KCs and UCs. In each case study, there are two disjoint sets. Namely, KCs set 

of size or cardinality 𝑚  and UCs set of size  𝑐 − 𝑚 . The information classes in KCs set 

are used for training the model, and then we use the trained model to perform class 

predictions on datasets that include samples of all class examples (i.e., KCs and UCs). A 

brief description of each case study is given as follows. 

1. The first case study uses two HSIs, the Salinas dataset consists of an agricultural 

setting, and the PU dataset has information classes with urban features. As shown 

in Table 4.1, there are eight test case classification scenarios. Each test case has 

only two information classes in KCs set, and the remaining classes are considered 

as UCs. We used SVM and SC2S methods with linear and RBF kernels. As a final 

result, report the prediction results in terms of OA of only KCs (OAKC), OA of both 

KCs and UCs (OAmix), and misclassification rate for each. 

2. In the second case study, we use three datasets, namely, Salinas (HSI), Cubert 

(HSI), and S2A (MSI). As shown in Table 4.3, there are five, three, and two test 

cases using Salinas, Cubert, and S2A datasets, respectively. There are more than or 

equal to two information classes in the KCs set in each of the ten test cases, and the 



 

65 

 

selection of class type is made subjectively. In this case study, we use seven 

classifiers that belong to one of the two categories of classification methods, such 

as classifiers without reject-option and with-reject option. As a final result, report 

OA and AA of each of seven classifiers for each test case. 

3. In the third case study, we use a comprehensive evaluation scheme in which the 

size of the KCs set is preset. Still, the type of information class is selected arbitrarily 

such that no bias occurs in class type selection. This case study consists of eight 

different test case scenarios designed using three datasets with an increasing 

number of KCs (or decreasing number of UCs). A typical use of each test case 

involves the following three steps. First, select a set of 𝑚 out of 𝑐 classes at random 

and perform model training. Second, use the trained model for class prediction on 

the dataset that includes all class examples. Finally, repeat steps 1 and 2 for ten 

random trials for each test case. OA, AA, FNR, and FPR are adopted to quantify 

the classification performance for the evaluation metrics. The metrics are estimated 

from the confusion matrix for each realization, and as a final result, the mean and 

standard deviation (SD) over ten realizations are reported.  

4.6 Results and Discussion 

This section shows the empirical effectiveness of the SC2S method over the existing 

classifiers such as RF, one-against-one based SVM, OSNNCV, OSNNNNDR, and P-SVM. 

Table 4.1: Summary of the list of eight open-set experimental test cases 

used in case study I. Each test case contains a specific set of 

Training classes or KCs and UCs relative to Salinas and PU 

datasets.   

Datasets Test cases KCs UCs # KC pixels # UC pixels 

S
a

li
n

a
s 

(H
S

I)
 C1 {1,2} {3,..,16} 5735 48394 

C2 {3,5} {1,2,4,6,..,16} 4651 49478 

C3 {9,10} {1,..,8,11,..,16} 9481 44648 

C4 {7,15} {1,..,6,8,..,14,16} 10847 43282 

P
U

 

 (
H

S
I)

 

C5 {1,2} {3,…,9} 25280 17496 

C6 {3,8} {1,2,4,…,7,9} 5781 36995 

C7 {1,7} {2,..,6,8,9} 7961 34815 

C8 {4,5} {1,2,3,6,..,9} 4409 38367 
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The input data used in the experiments are preprocessed using min-max normalization over 

the interval [0,1]. We have performed training and classification of all the considered 

classifiers in the MATLAB environment. During training, only 10 percent of the whole 

reference data has been randomly selected for training. For the RF classifier, the number 

of trees is set to 30. The number of splits is set to  𝑛 −     where 𝑛 denotes the total number 

of training samples (Ghamisi et al., 2017). In terms of the SVM, P-SVM, and OCSVM, 

the linear kernel used only in case study I and RBF kernel is used in case studies I, II and 

III.  

    The hyperplane parameters  = {𝐶 𝛾 𝜈} (𝐶 is regularization parameter) have been 

searched in the ranges of 𝐶 = { 0−     05} in powers of  0 steps, 𝛾 = {      50} and 

𝜈 = { 0−     0− } in the step of 0.01 using grid search. For a detailed explanation of the 

classifiers, see chapter 2. The selection of 𝑇𝑟 = {0 0 0    0 99}The selection of optimal 

thresholds 𝑇𝑟 = {0 0 0    0 99} (Farfan-Escobedo, Enciso-Rodas and Vargas-Munoz, 

2017; Júnior et al., 2017), 𝑇𝑝 = {0  5  0 5     } (Platt, 1999; Scheirer, Jain and Boult, 

2014) and model parameters are tuned during the training stage using grid search based on 

a 10-fold CV. The prediction performance of the considered classifiers has been 

investigated and compared by performing class prediction on the data comprising samples 

from both trained and untrained classes. The objective is to measure the number of false-

known predictions produced by a classifier. The classification accuracies obtained by 

different classifiers are reported in Tables 4.2, 4.3, 4.4, and 4.5. The results reveal 

interesting observations about the incorrect predictions often produced by the classifiers. 

4.6.1 Performance evaluation of the list of classifiers using case study I 

The quantitative OA results of SVM and SC2S methods for eight test cases (C1 to C8) are 

shown in Table 4.2. From a detailed analysis of Table 4.2, we notice that, in the majority 

of the test cases of closed-set setting, our method obtained comparable OAKC and 

misclassification rates with SVM. But, the proposed method significantly outperformed 

SVM more consistently for all the test cases of open-set settings. Unlike the proposed 

method, SVM showed erratic behaviors, where the misclassification rate is very high for 
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open-set scenarios compared to closed-set scenarios. There is a minimum of 0.06% and a 

maximum of 0.31% accuracy difference between linear-SVM and linear-SC2S classifier 

predictions for KCs (OAKC) alone. 

    In contrast, it is about 2.26% and 73.66% for the mixed set (OAmix) that presents an 

actual scenario consisting of both KCs and UCs. Similarly, in the case of accuracy 

difference between RBF-SVM and RBF-SC2S predictions, there is a minimum and 

maximum of 0.35% and 1.37% for KCs set; 1.86% and 77.82% for the mixed set, 

respectively. The obtained results indicate that the proposed linear-SC2S method yields an 

OA approximately equal to linear-SVM for KC cases and significantly outperforms linear-

SVM for mixed cases. Interestingly, there is no substantial difference between linear-SVM 

and RBF-SVM with regard to OA is concerned. However, based on the experimental 

Table 4.2: OA (in %) and misclassification rate (in %) results to evaluate the 

prediction performance of conventional SVM and SC2S classifier 

with linear and RBF kernels for the specific open-set test case 

scenarios in case study I. The best accuracy and error rate in each 

row are shown in bold. 

T
es

t 
C

a
se

s 

K
er

n
el

 

Prediction without UCs  

(closed-set setting) 

Prediction with UCs 

(open-set setting) 

 OAKC 

 (%) 

Misclassification 

rate (%) 

OAmix 

(%) 

Misclassification 

rate (%) 
# UC classified 

SVM SC2S SVM SC2S SVM SC2S SVM SC2S SVM SC2S 

C1 
L 99.89 99.69 0.11 0.31 10.58 84.24 89.42 15.76 0 39893 

R 99.86 99.51 0.14 0.49 10.58 88.40 89.42 11.60 0 42145 

C2 
L 99.26 99.20 0.74 0.80 17.39 28.56 82.61 71.44 0 6065 

R 99.98 99.29 0.02 0.71 20.04 26.14 79.96 73.86 0 3379 

C3 
L 99.26 99.20 0.74 0.80 17.39 28.56 82.61 71.44 0 6065 

R 99.26 98.46 0.74 1.54 17.36 48.96 82.64 51.04 0 17169 

C4 
L 99.89 99.82 0.11 0.18 20.04 22.92 79.96 77.08 0 1600 

R 99.98 99.29 0.02 0.71 20.04 26.14 79.96 73.86 0 3379 

C5 
L 99.87 99.75 0.13 0.25 59.02 61.28 40.98 38.72 0 1025 

R 99.83 98.96 0.17 1.04 59 60.86 41 39.14 0 1016 

C6 
L 87.16 86.96 12.84 13.04 11.7 24.7 88.30 75.30 0 5568 

R 87.16 86.58 12.84 13.42 11.78 34.60 88.22 65.40 0 9794 

C7 
L 90.35 90.28 9.65 9.72 16.4 19.11 83.60 80.89 0 1055 

R 90.35 88.98 9.65 11.02 16.82 19.11 83.18 80.89 0 1092 

C8 
L 99.93 99.82 0.07 0.18 10.30 21.58 89.70 78.42 0 4833 

R 99.93 99.23 0.07 0.77 10.30 33.58 89.70 66.42 0 9990 

Note: L and R represents linear and RBF kernel, respectively. 
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results, the RBF-SC2S offers superior performance yielding an OA much higher than 

linear-SVM, linear-SC2S, and RBF-SVM for the mixed set (OAmix).  

4.6.2 Performance evaluation of the list of classifiers using case study II 

In case study-II, the prediction performance of the seven different classifiers has been 

investigated and compared for ten test cases of open-set scenarios. The classification 

accuracies obtained by seven classifiers are reported in Table 4.3. The obtained results 

reveal interesting observations about the incorrect predictions often produced by the 

classifiers. It can be observed in Table 4.3 that there is a considerable difference between 

OA and AA results consistently for all cases. This significant difference can be ascribed 

due to the presence of unbalanced samples in the datasets. For Salinas data, SC2S 

(OCSVM+SVM) produced the maximum OA of 99.78% and AA of 98.22%, compared to 

the SC2S (OCSVM+RF) method, there was more than 0.01% improvement in both OA and 

AA. Similarly, for Cubert and S2A data, SC2S (OCSVM+RF) and SC2S (OCSVM+SVM) 

produced the highest accuracies than RF, SVM, OSNNCV, OSNNNNDR, and P-SVM. This 

Table 4.3: OA (in %) and AA (in %) results obtained for ten open-set test cases 

(in case study II) by the list of classifiers having without reject-

option and with reject-option. The best accuracies in each row are 

shown in bold. 

D
a
ta

se
ts

 

T
e
st

 c
a
se

 

Prediction for the available reference data (both trained and untrained classes) : Accuracy in [%] 

Classifiers without reject-

option 
Classifiers with reject-option 

RF SVM OSNNCV OSNNNNDR P-SVM 
SC2S 

(OCSVM+RF) 

SC2S 

(OCSVM+SVM) 

OA AA OA AA OA AA OA AA OA AA OA AA OA AA 

S
a
li

n
a
s 

C1 10.55 66.36 10.57 66.41 10.50 65.85 14.24 67.05 58.62 81.72 99.77 98.19 99.78 98.22 

C2 26.41 82.96 26.41 82.02 49.15 87.70 61.16 90.41 83.77 95.47 95.37 97.41 95.37 97.44 

C3 50.49 88.89 50.97 90.30 57.07 89.19 78.10 92.84 66.45 92.38 92.34 95.83 92.81 97.23 

C4 8.99 77.92 9.11 79 22.66 79.24 26.97 81.62 45.82 84.61 78.61 92.71 78.70 93.49 

C5 31.87 79.37 31.93 79.74 34.02 79.40 33.46 79.47 34.12 80 71.94 90.14 72 90.49 

C
u

b
e
r
t C6 51.45 66.58 51.52 66.67 51.90 66.93 52.31 67.21 82.18 87.52 88.21 91.40 88.28 91.50 

C7 49.93 66.59 49.94 66.60 50.48 66.94 51.92 67.93 70.68 80.38 82.42 87.60 82.42 87.60 

C8 76.08 74.41 76.61 74.91 76.16 74.49 76.53 74.88 74.67 73.05 91.29 90.81 91.87 91.35 

S
2

A
 

C9 45.35 65.47 45.69 65.95 97.55 97.55 99.01 98.55 94.68 93.23 98.90 98.39 99.24 98.87 

C10 77.23 66.44 77.37 66.53 77.60 66.67 80 70.47 84.75 77.48 92.02 89.38 92.02 89.38 

Note: The test cases are C1={1,2}, C2={1,2,6,7,14}, C3={1,2,6,7,9,…,14}, C4={11,12,13,14}, C5={3,4,5,8}, C6={1,3}, C7={1,2}, 

C8={1,2,3}, C9={2,3}, and C10={1,3}. 
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trend is particularly due to the inclusion of a reject option and an extra-label. The higher 

the OA and AA will be, the lower the false-known errors. 

    Interestingly, there is no substantial difference between RF and SVM regarding OA and 

AA. The comparatively lower accuracy for the C5 can be ascribed to the presence of 

substantially sparse areas of vegetable crops with soil backgrounds. However, based on the 

experimental results, the SC2S using SVM as supervised classifiers indicates superior 

performance yielding an OA and AA substantially higher than the accuracies among all the 

seven classifiers (see Table 4.3). 

4.6.3 Performance evaluation of the list of classifiers using case study III 

Tables 4.4 and 4.5 summarize the results of seven different classification algorithms in 

terms of mean and SD of accuracies over ten trials. A high mean of OA and AA values 

indicate low false prediction errors. A low SD says that the actual accuracy tends to be 

close to the mean of OA and AA. The classifiers without rejection, such as RF and SVM, 

produced the lowest mean (SD) of OA and AA confirming the high false prediction errors 

Table 4.4: The mean and SD of OA (in %) results over ten realizations are 

presented for eight open-set scenarios (in case study III) by the 

list of classifiers having without reject-option and with reject-

option. The best results in each row are shown in bold.   

D
a
ta

se
ts

 

T
e
st

 c
a
se

s Classification 

scenarios 

Prediction for the available reference data (both trained (or KCs) and untrained classes (or UCs))  

Classifiers without 

reject option 
Classifiers with reject option 

RF SVM OSNNCV OSNNNNDR P-SVM 
SC2S 

(OCSVM+RF) 
SC2S 

(OCSVM+SVM) 

KCs UCs 

OA [%] OA [%] OA [%] OA [%] OA [%] OA [%] OA [%] 

Mean 

(SD) 
Mean 

(SD) 
Mean 

(SD) 
Mean 

(SD) 
Mean 

(SD) 
Mean 

(SD) 
Mean 

(SD) 

S
a
li

n
a
s 

C1 2 14 
12.84 

(5.62) 

12.88 

(5.62) 

22.02 

(8.15) 

50.60 

(25.41) 

53.90 

(31.88) 

76 

(14.35) 

76.03 

(14.33) 

C2 5 11 
29.15 

(7.74) 

30.34 

(9.01) 

38.86 

(7.78) 

39.33 

(13.09) 

51.47 

(14.69) 

68.31 

(10.55) 

69.49 

(10.39) 

C3 8 8 
46.46 

(7.93) 

48.20 

(8.44) 

53.56 

(5.74) 

51 

(7.54) 

54.68 

(6.78) 

62.98 

(4.30) 

64.69 

(4.05) 

C4 12 4 
61.59 

(5.85) 

73.37 

(6.51) 

70.58 

(5.29) 

70.74 

(4.84) 

75.55 

(6.21) 

69.29 

(5.62) 

80.92 

(6.95) 

C
u

b
e
r
t C5 2 2 

49.65 

(1.30) 

49.99 

(1.37) 

50.83 

(1.51) 

60.21 

(10.86) 

73.86 

(14.91) 

84.77 

(5.80) 

85.11 

(6.21) 

C6 3 1 
74.06 

(1.45) 

75.65 

(1.40) 

75.74 

(1.42) 

77.04 

(1.58) 

86.55 

(7.37) 

91.13 

(3.37) 

92.72 

(4.04) 

S
2

A
 C7 2 2 

43.95 

(14.37) 

44.08 

(14.17) 

44.85 

(13.63) 

65.91 

(27.73) 

85.72 

(22.14) 

91.80 

(4.25) 

91.93 

(4.45) 

C8 3 1 
68.32 

(20.96) 

70.08 

(19.36) 

69.85 

(19.36) 

70.68 

(20.23) 

84.63 

(17.13) 

93.06 

(3.49) 

94.87 

(5.09) 
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in all test cases. In this case of Salinas data, SC2S (OCSVM+SVM) produced the highest 

mean OA of 80.092% and AA of 91.80% for C5 when compared with SC2S (OCSVM+RF) 

there is more than 0.01% improvement. A similar trend can be observed for Cubert and 

S2A data, where the SC2S algorithm produced the highest mean OA and AA than RF, 

SVM, OSNNCV, OSNNNNDR, and P-SVM.  

    To assess the error rates of all experiments in this case study, 3D bar plots illustrating 

the statistical measures like mean FNR (%) and mean FPR (%) are shown in Figure 4.4. 

Note, the FNR and FPR are estimated as two-class classification problems, i.e., KC or UC. 

It can be observed that RF and SVM resulted in 0% FNR and 100% FPR for all the cases, 

which means that all of the untrained UC samples are confidently classified incorrectly as 

one of the KCs. Interestingly, there is no substantial difference between RF and SVM 

concerning OA, AA, FPR, and FNR. Contrarily, the classifiers with-reject option (i.e., 

OSNNCV, OSNNNNDR, P-SVM, and SC2S) are relatively able to identify more UC samples 

with less than 10% FNR and less than 100% FPR. This increasing trend is mainly due to 

the inclusion of the reject option with an extra-label. Moreover, the FNR of SC2S can yield 

Table 4.5: The mean and SD of AA (in %) results over ten realizations are 

presented for eight open-set scenarios (in case study III) by the list 

of classifiers having without reject-option and with reject-option. 

The best results in each row are shown in bold.   

D
a
ta

se
ts

 

T
e
st

 c
a
se

s Classification 

scenarios 

Prediction for the available reference data (both trained (or KCs) and untrained classes (or UCs))  

Classifiers without reject 

option 
Classifiers with reject option 

RF SVM OSNNCV OSNNNNDR P-SVM 
SC2S 

(OCSVM+RF) 
SC2S 

(OCSVM+SVM) 

KCs UCs 

AA [%] AA [%] AA [%] AA [%] AA [%] AA [%] AA [%] 

Mean 

(SD) 
Mean 

(SD) 
Mean 

(SD) 
Mean 

(SD) 
Mean 

(SD) 
Mean 

(SD) 
Mean 

(SD) 

S
a
li

n
a
s 

C1 2 14 
66.39 

(0.44) 

66.38 

(0.40) 

71.34 

(6.55) 

83.27 

(12.37) 

80.67 

(9.19) 

90.42 

(7.19) 

90.45 

(7.19) 

C2 5 11 
81.87 

(2.13) 

82.55 

(1.53) 

82.96 

(4.04) 

86.49 

(5.85) 

86.68 

(3.88) 

89.35 

(3.99) 

90.03 

(3.61) 

C3 8 8 
85.56 

(2.61) 

86.74 

(1.91) 

85.34 

(4.72) 

85.31 

(4.54) 

88.78 

(3.70) 

88.91 

(2.93) 

90.08 

(2.56) 

C4 12 4 
88.62 

(1.52) 

90.25 

(1.25) 

87.03 

(2.97) 

87.85 

(2.95) 

90.42 

(1.64) 

91.03 

(1.47) 

92.65 

(1.47) 

C
u

b
e
r
t C5 2 2 

66.24 

(0.28) 

66.63 

(0.02) 

67.75 

(0.73) 

73.72 

(7.23) 

73.59 

(5.52) 

91.72 

(3.32) 

92.11 

(3.52) 

C6 3 1 
74.51 

(0.22) 

74.93 

(0.06) 

75.62 

(1.18) 

80.53 

(6.86) 

87.62 

(3.36) 

88.38 

(7.08) 

88.81 

(7.29) 

S
2

A
 C7 2 2 

66.53 

(0.41) 

66.62 

(0.09) 

67.63 

(1.94) 

77.58 

(13.05) 

79.36 

(13.18) 

92.98 

(8.23) 

93.08 

(8.31) 

C8 3 1 
74.51 

(0.42) 

74.87 

(0.09) 

76.05 

(2.53) 

83.21 

(9.76) 

88.08 

(9.66) 

87.85 

(8.46) 

88.21 

(8.66) 
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                         (a)                    (b)                    (c)                     (d) 

 

                      

                      (e)                     (f)                    (g)                   (h) 

 

 

Figure 4.5: Classification maps obtained for specific test case by SVM in (a) 

and (e); (b) and (f) by SC2S (OCSVM+SVM) prediction for full 

PU image (above) and Salinas image (below). A detailed 

representation of classified maps to assess false-known errors (in 

red) are obtained by SVM (c) and (g); (d) and (h) by SC2S 

prediction only for available ground-truth reference data. 
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0% if the model learning is done on the representative training set of KCs. In all the test 

cases, training set   was selected at random. However, based on the obtained results, SC2S 

using SVM as a supervised method indicates superior performance that yielded a higher 

OA (>64.50%), AA (>89.50%), lower FPR (<67%), and relatively low FNR (<1.6%) 

among the considered seven classification techniques (see Table 4.4, Table 4.5, and Figure 

4.4).    

For illustrative purposes, Figure 4.5 shows the classification maps obtained by SVM 

and SC2S (OCSVM+SVM) classifiers for the specific realization of test cases C3 for PU 

in case study I and C1 for Salinas data in the case study I or II or III. In addition, Figures 

4.5 (c), (d), (f), and (g) provide better insights into the confident errors produced by the 

classifiers, especially for SVM. In this context, the training set of C1 included 574 pixel 

vectors of two KCs (i.e., broccoli weeds 1 and broccoli weeds 2), whereas the testing set 

included 54129 (5735 of KCs and 48394 of UCs) samples of all 16 classes. The OA, AA, 

FPR, and FNR results of SVM are 10.58%, 66.60%, 100%, and 0%, while SC2S yielded 

99.82%, 99.05%, 0.02%, and 1.48%, respectively. Overall, the classification maps shown 

in Figure 4.5 indicate the positive effect of classification having a reject-option for 

minimizing the false positives for UCs. 

Unlike (Mantero, Moser and Serpico, 2005; Jun and Ghosh, 2013; Condessa, Bioucas-

Dias and Kovačević, 2016; Júnior et al., 2017), we have proposed a fully supervised non-

parametric multi-class classifier system that is simple, easy to integrate and implement 

classification of remote sensing data in the presence of UCs. In practical applications, a 

pattern recognition system should avoid false predictions (Chow, 1970). Based on these 

observations, we can conclude that the results across the ten cases are consistent with the 

SC2S algorithm in providing reliable and robust thematic accuracy 

4.7 Chapter Conclusions 

In this paper, we proposed a novel classification algorithm called the SC2S for the multi-

class classification even in the presence of many UCs. This study has evaluated the 

importance and advantage of including a class label for grouping anomalous instances that 
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have a significant deviation from training distribution. Comparing the performance of SC2S 

against classifiers with and without reject option indicates that the proposed SC2S method 

effectively provides trustworthy classification results with significantly lower error rates. 

The proposed SC2S method has potential applications in the classification of remote 

sensing imagery from which fewer information classes are to be retrieved while rejecting 

the presence of a large number of spectral classes or UCs. 
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CHAPTER 5 

SHADOW AND ILLUMINATION INVARIANT 

CLASSIFICATION USING MULTISPECTRAL AND 

HYPERSPECTRAL DATA 

Prelude: In this chapter, a set of new categories of supervised image classification 

algorithms are proposed for shadow and illumination invariant class prediction using 

spectral information from MSIs or HSIs. In the first set, we present a novel version of two 

information-theoretic spectral similarity measures. The second set consists of a two-stage 

system called shadow and illumination invariant classifier system (SI2CS). In order to 

evaluate the proposed three different algorithms, we designed an experimental setup 

consisting of several classification scenarios with a varying range of shadow and 

illumination complexities. The overall performance is measured in terms of classification 

accuracies and thematic classification maps obtained from several experimental scenarios. 

5.1 Introduction3 

Optical images are one of the prime sources of remote sensing data for various applications 

across a range of scientific and engineering fields (Eismann, 2012; Taneja, Ballan and 

Pollefeys, 2015). Examples of such applications include, but are not limited to, 

environment monitoring, weather forecasts, hydrological management, military, and 

planetary exploration (Sabins, 1999; Clark et al., 2003; Khan et al., 2018). Optical remote 

sensing technology is continuously advancing to meet the current and future application 

 
3 This chapter will be published as an article and currently is in review in Pattern recognition, 

with the title: “Shadow and Illumination Invariant Classification for High Resolution Images”. 

Authors: Dubacharla Gyaneshwar and Rama Rao Nidamanuri. 
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requirements. The technological advances are ranging from observation practices to 

producing high-quality images with different resolutions. For example, the interest to non-

invasively map materials from a remote location has resulted in spectral imaging 

techniques (Clark et al., 2003; Akhtar and Mian, 2018). Unlike traditional imaging, spectral 

imaging systems produce images like MSIs and HSIs with rich spectral information along 

with spatial data. Both MSIs and HSIs are produced by passive sensors that rely on the 

source of scene illumination and incoming radiation, similar to other traditional optical 

images. Because of the higher level of spectral detail than MSIs, HSIs provide the 

advantage of accurately characterizing a wide range of materials from the surface 

reflectance using techniques from domains like machine learning, information theory, and 

so on. However, both MSIs and HSIs have merits and demerits based on the application 

selected.  

    Despite the success achieved by image analysis (including MSI/HSI) in many remote 

sensing applications, there still exists a number of significant challenges and uncertainties 

that can hinder the success (Dubacharla and Nidamanuri, 2021). For example, the 

information in the imagery data collected by the optical sensors is influenced by 

uncertainties from adverse environmental effects such as shadows and changing lighting 

conditions. Due to these unavoidable uncertainties in any given non-trivial target scenes, 

the performance of analysis techniques like classification, detection, etc., will be unstable 

 

 

Figure 5.1: Illustrating different types of shadows. The feature space plot in 

the right represents the 2-D scatter plot and spectral reflectance 

curves of the vegetation reflectance in the area exposed to light and 

dark regions where illumination from a light source is blocked. 
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and may cause serious problems (Adler-Golden et al., 2001; Sanin, Sanderson and Lovell, 

2012; Rüfenacht, Fredembach and Süsstrunk, 2014). Hence, there is a pressing need to 

address these challenges and issues, which require careful consideration and analysis.  

    A shadow, shade, or an unlit area is a natural phenomenon that has always existed. As 

shown in Figure 5.1, they are commonly observed optical events in any given scene 

depending on the sensor view angle, illumination, and scene geometry. Whereas, the 

presence of different lighting conditions in the location of study can be caused by changes 

in the ambient lighting environment, for example, due to rapid differences in the weather 

conditions such as cloudy, sunny, and shade. A shadow can be grouped into one of the two 

categories, namely, cast shadow (CS) and self-shadow (SS). A CS is an object’s adjacent 

shadow in the direction of the light source, and a SS is an unilluminated area of the object 

itself. In addition, there are mainly two different regions in a shadow, such as an umbra 

and a penumbra (Dare, 2005). The dark region of a shadow is referred to as umbra, and the 

transition region around the umbra is referred to as penumbra (see Figure 5.1).  

    In many practical image-driven applications, shadows are a severe problem because they 

limit the information mining and image interpretation tasks by occluding the target objects 

or study scene. For example, a conventional supervised classification model is built using 

a training set consisting of in-light (IL) KC samples that are exposed to a sufficient lighting 

condition. However, the trained classification model deployed in real-world application 

environments often faces test cases arising either from IL-KC distribution or UC 

distribution that may or may not be exposed to bright or dim illumination. The UC 

distribution means samples belonging to out-of-KC training distribution, unseen class 

samples during training, and KCs either exposed to bright or dim light (Júnior et al., 2017; 

Dubacharla and Nidamanuri, 2021). As a result, in such shadow and changing light 

conditions, most classifiers fail to classify the shaded or in-shadow (IS) KC examples and 

produce errors (i.e., false negatives). This erroneous result is more common in MSI/HSI 

analysis due to spatial pixel value and spectral reflectance curve distortions. Thus, the 

development of new algorithms capable of performing shadow and illumination invariant 
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detection and classification is critical for accurate remote sensing image analysis because 

their presence skews the image information, especially for MSIs/HSIs. 

    This chapter presents new categories of supervised algorithms for shadow and 

illumination invariant image classification using MSIs and HSIs. The first category 

consists of two information-theoretic spectral similarity measures, namely SCM and SID. 

These similarity measures use an adaptive threshold search technique to perform invariant 

class prediction. The second category has a novel two-stage cascade classifier system 

named shadow and illumination invariant classifier system (SI2CS). The SI2CS is 

developed by combining two diverse supervised models: 1) OCC and 2) rule-based 

similarity matching (RSM). In the first stage of SI2CS, OCC correctly maps the training 

distribution samples of KC (i.e., IL-KC samples) as one group and unseen UC samples as 

another group. The UC group consists of IS-KCs like SS-KCs (i.e., unlit portions of the 

KCs) and CS-KCs (shadows cast by a UC or KC object on the KC). In the second stage, 

RSM uses a decision rule to allow a test input to SMM or not. In this study, we use SCM 

and SID as SMM, but the flexibility of SI2CS is that other matching techniques can also be 

utilized as SMM in RSM. The idea behind using SMM is that we can discriminate an IS-

KC sample from a UC sample. The reason for this is because a minimum of 50% spectral 

signature matches between a typical IL-KC sample and an IS-KC sample (Zhai et al., 

2019). Figure 5.1 shows this similarity trend between different vegetation spectra, i.e., IL 

vegetation and IS vegetation spectral signatures. So, we can exploit this similarity match 

between IL-KC and IS-KC for invariant class prediction. The cascading architecture in 

SI2CS is designed to unify the decisions of two different models. In this way, the current 

chapter presents four algorithms of two different categories, i.e., two proposed versions of 

SMMs and SI2CS with different SMM.  

    The previous studies in the literature have mainly dealt with intending to perform either 

shadow detection or removal and classification by primarily using physical or texture 

properties in the image (Adler-Golden et al., 2001; Dare, 2005; Sanin, Sanderson and 

Lovell, 2012). But very few studies were reported for shadow-invariant detection or 

classification using only spectral information from HSIs/MSIs. Unlike the previous studies, 



 

79 

 

our approaches are quite simple and easy to implement and jointly aim at performing 

shadow and illumination invariant class predictions. In particular, the advantage of our 

methods is the use of the same training set required for a supervised approach and performs 

invariant class prediction with better accuracy. This study is the first of a kind that presents 

shadow and illumination invariant algorithms to handle the complex shadow regions and 

lighting settings in MSIs as well as in HSIs. 

    This chapter is organized into six sections. The following section presents the research 

problem statement, while section 5.3 briefly describes the datasets used in our analysis of 

this chapter. Section 5.4 presents the three proposed methodologies and frameworks used 

to investigate this chapter's objectives. Section 5.5 describes and discusses the 

experimental results obtained. Finally, the last section presents the conclusions of this 

chapter. 

5.2 Problem Statement 

Let 𝐗 ∈ ℝ𝑎×𝑏×𝑑 represent an MSI/HSI with 𝑎 rows or lines, 𝑏 columns or samples, and   

spectral channels. Let 𝐱𝑖 ∈ ℝ𝑑 (where 𝑖 =      𝑎 × 𝑏 ) be the 𝑖𝑡ℎ pixel vector in 𝐗, 𝑦𝑖 be 

the corresponding KC label where 𝑦𝑖 ⊆ 𝑦Ψ and 𝑦Ψ is the set of 𝑐 number of actual 

information classes in a given image or scene, say 𝑦Ψ = {    𝑐}. Then the objective of a 

supervised classification approach is to map each pixel vector 𝐱𝑖 to corresponding 𝑦𝑖, say 

𝑓: 𝐱 → 𝑦 where 𝑓 is the decision function learned during training. However, in practice, 

collecting the full extent of actual information classes in any given scene of study before 

classification is quite difficult, costly. It may not be possible in some cases. In such cases, 

we have information on the classes of interest referred to as KCs or IL-KCs. So, the 

incomplete knowledge of the actual classes during training would lead to prediction errors 

because of the forced assignment problem in multiclass classification. Thus, in these 

circumstances, OCC is a suitable method because it does not suffer from the forced 

assignment problem and results in relatively low errors. 
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    Yet, as previously mentioned, a real-world classification task has uncertainties other than 

UCs, namely, shadows and varying illumination effects. The existing methods are sensitive 

to IS-KC regions and produce omission errors. Examples of IS-KC samples are CS-KC, 

SS-KC, KC umbra, and KC penumbra. Let 𝑦Ω ∈ ℝ𝑚, 𝑦℧ ∈ ℝ 𝑐−𝑚 , and 𝑦Φ ∈ ℝ𝑚 denote 

the class labels of IL-KC, UCs, and IS-KC, respectively. Then, we can define the set of all 

possible class labels in any given target scene based on the spectra as 𝑦Ψ = 𝑦Ω ∪ 𝑦℧ ∪ 𝑦Φ 

and 𝑦Ω ∩ 𝑦℧ ∩ 𝑦Φ = ∅. Due to the evident spectral signature mismatch between the IL-

KC (𝑦Ω) and IS-KC (𝑦Φ) spectra, most classification methods fail to map them as a single 

class even though both belong to the same target class material. On the contrary, our 

methods are capable of grouping 𝑦Ω and 𝑦Φ together, i.e., 𝑦Φ = 𝑦Ω = { } and 𝑦℧ = {0} 

for an OCC problem. We assume that the classifier is trained with a representative and 

diverse set of training set  = {𝐱𝑖 𝑦𝑖
Ω}𝑖=1

𝑛  samples that belong to the IL-KC set, i.e., 𝑦𝑖
Ω ∈

{ }. Then our proposed algorithms aim to reduce errors, especially omission errors or false-

negatives, for candidate shadow pixels by classifying each pixel vector as UC  𝑦℧ , 

otherwise as KC  𝑦Ω . 

5.3 Datasets Used 

We used six different sources of multi-platform and multi-sensor spectral images (one MSI 

from Worldview-3 (WV-3) spaceborne platform, two HSIs from Cubert UHD 185s with 

an airborne and a terrestrial platform, one HSI each from a terrestrial platform equipped 

with Nuance FX, Specim-IQ, and Visible sensors). The six indoor-outdoor images with 

different spatial and spectral resolutions cover several land cover categories and sites with 

varying complexities of shadows and illumination effects. The six imagery datasets were 

selected to form a complete and non-trivial experimental setup to assess the generalization 

of the methods. To measure the performance of algorithms quantitatively, we manually 

interpreted and collected the ground truth reference samples for IL and IS regions. True 

color composites and ground truth maps of the six images are shown in Figure 5.2. 

WV-3 image: The spaceborne WV-3 MSI is from the DigitalGlobe and distributed 

by the SpaceNet (SpaceNet on Amazon Web Services (AWS)., 2021). The WV-3 dataset 
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                                     (e)                                                                         (f) 

Figure 5.2: Three band true color composite images with manually labeled IL 

and IS ground truth samples of the dataset used for the 

experiments. (a) Spaceborne WV-3 MSI. (b) Airborne Cu-D HSI. 

(c) Terrestrial Harvard HSI. (d) Terrestrial Cu-T HSI. (e) Indoor 

Specim HSI. (f) Terrestrial GS HSI. 
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was acquired, on 15th October 2015, over the city of Las Vegas, United States of America 

(USA), under cloud-free sky conditions. WV-3 is pan-sharpened satellite imagery 

comprising of  300 ×  300 spatial pixels, each having a very high-spatial-resolution of 

30 cm, and eight spectral bands were collected in the spectral range 0.4 to 1.04 𝜇m with a 

varying spectral resolution of 0.04 to 0.68 𝜇m. The number of ground truth reference pixels 

for IS and IL are 11485 and 12601, respectively. The dominant LULC types in the 

heterogeneous urban landscape study site include impervious surfaces, trees, and shadows. 

So, there are four information classes and eight spectral classes in WV-3 MSI. Figure 5.2(a) 

shows the overlay of the ground truth map on the true color composition image, where the 

shadow strength in WV-3 is medium and its size is moderate. 

 Cubert drone (Cu-D) image: The drone-based airborne Cu-D HSI was acquired 

over the agriculture crops grown in the experimental fields of the University of Agricultural 

Sciences, Bengaluru, India, on 5th April 2017. This dataset was captured by the Cubert 

UHD 185s sensor mounted on the quadcopter drone flying at the height of 20 m. The image 

has a spatial dimension of 900×900 pixels with a very high spatial resolution of 5 cm and 

has 137 spectral bands in the wavelength range 0.45 to 0.95 𝜇m with a spectral resolution 

of 0.08 𝜇m. The number of ground truth reference pixels for IS and IL are 14558 and 8074, 

respectively. The predominant land use categories in the study site are maize crop, soil, 

CS, and SS. So, there are a total of two information classes and four spectral classes in Cu-

D HSI. Figure 5.2(b) shows the overlay of the ground truth map on the true color 

composition image where the shadow strength and size in Cu-D are moderate. 

Harvard image: The outdoor ground-based platform Harvard is from the Harvard 

HSI database acquired in daylight conditions in 2011 (Chakrabarti and Zickler, 2011). The 

high-resolution Harvard dataset captured a front view main scene of one of the residential 

houses at Harvard University, where a massive shadow of a tree with its branch is cast on 

the house front view. This image consists of 1392×1040 spatial pixels with a very high 

spatial resolution of 2.5 cm and has 31 spectral bands in the wavelength range 0.42 to 0.72 

𝜇m with a spectral resolution of 0.01 𝜇m. The number of ground truth reference pixels for 

IS and IL in Harvard image are 20617 and 9212, respectively. Figure 5.2(c) displays the 
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overlay of the ground truth map on the RGB image. The total number of information classes 

and spectral classes in Harvard MSI are three and six, respectively. As shown in Figure 

5.2(c), the Harvard image contains three dominant information classes such as bricks, 

stone, a door, and, besides, a large shadow region cast by a tree on the house. 

Cubert terrestrial (Cu-T) image: The terrestrial-based Cu-T HSI was acquired over 

the agriculture crops grown in the experimental fields of the University of Agricultural 

Sciences, Bengaluru, India, on 5th April 2017. This dataset was captured by the Cubert 

UHD 185s sensor mounted on the ground-based tripod capturing the top view of the crop. 

The Cu-T image has 1000×1000 spatial dimensions with an ultra-high spatial resolution 

of 2 mm, and a total of 139 spectral bands were collected in the spectral range 0.45 to 0.95 

𝜇m with a spectral resolution of 0.08 𝜇m. The number of ground truth reference pixels for 

IS and IL in Cu-T image are 20059 and 13473, respectively. The predominant LULC 

categories in the study site are cabbage crop, soil, CS, and SS. This image consists of two 

information classes and four spectral classes. Figure 5.2(d) shows the overlay of the ground 

truth map on the true color composition image where the shadow strength and size in Cu-

D are moderate. 

Specim image: The indoor Specim HSI was collected, on 14th March 2018, in an 

indoor environment scene by a portable snapshot Specim-IQ camera mounted on a tripod. 

This terrestrial image consists of 512×512 pixels with a very high spatial resolution of 1 

cm and has 204 spectral bands in the spectral range of 0.4 to 1 𝜇m with a spectral resolution 

of 0.03 𝜇m. The number of ground truth reference pixels for IS and IL in Specim image 

are 14551 and 1050, respectively. The dataset has predominantly four classes: polyvinyl 

chloride-based floor, white reference plate, leaves, wall, and large shadows that are 

spatially connected with objects. There are four information classes and eight spectral 

classes in this HSI. As shown in Figure 5.2(e), the Specim dataset describes the best indoor 

test case scenario for shadows with high shadow strength, size, and different shades caused 

by multiple light sources.  
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Gualtar step (GS) image: The outdoor GS HSI captured the natural scene of 

residential brick stairs in the Gualtar campus, University of Minho, Portugal, on 21st May 

2003 (Nascimento, Amano and Foster, 2016). The image has 1024×1344 spatial pixels 

with a very-high nominal spatial resolution of 1 cm and has 33 spectral bands in the 

wavelength range 0.4 to 0.72 𝜇m with a spectral resolution of 0.01 𝜇m. The number of 

ground truth reference pixels for IS and IL in the GS image are 21849 and 25374, 

respectively. In this dataset, there are three information classes and six spectral classes. 

This study site consists of three predominant LULC categories or information classes: 

bricks, grass, and pillars (see Figure 5.2(f)). In addition, three IS regions of each 

information class with high shadow strength and considerable large shadow region size. 

5.4 Methodology 

In the following, we describe the two new sets of shadow and illumination invariant image 

classification algorithms for MSIs and HSIs. The first set consists of two proposed versions 

of SMMs, namely SID and SCM. An adaptive threshold selection procedure is presented 

for both SID and SCM to estimate a rejection threshold for invariant predictions. The 

second set consists of a two-stage interconnected system, called SI2CS, developed by 

cascading OCC and RSM. A detailed explanation of each proposed method is described as 

follows. 

5.4.1 Proposed SMMs 

This subsection briefly describes the two proposed variants of SMMs for shadow and 

illumination invariant image classification methods. The two considered SMMs are SCM 

as a deterministic measure and SID as a stochastic measure. A detailed description of the 

SMMs is presented in chapter 2. Below we provide a detailed description of the proposed 

version of SID and SCM.  
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5.4.1.1 Proposed SID 

SID, is introduced by (Chein-I Chang, 1999), is a supervised classification method based 

on probabilistic measures adopted from information theory. It is used for measuring the 

discrepancy of probabilistic behaviors between test pixel spectral  𝐳  and target reference 

spectra  𝐱 . In SID, each input is viewed as a random variable, and probabilistic behaviors 

are calculated to estimate spectral variability. Unlike classical SMMs, the proposed SID 

uses a set of reference pixel vectors 𝐱† = {𝐱𝑖}𝑖=1
𝑛  from training set  . For each test pixel 

vector 𝐳, we calculate a set of SID scores between 𝐳 and every reference pixel vector from 

the set 𝐱†. For example, the 𝑖𝑡ℎ SID score, say 𝑓𝑆𝐼𝐷
𝑖 , is computed between 𝐳 and 𝑖𝑡ℎ reference 

pixel vector 𝐱𝑖 from 𝐱†. As a final SID score, we add up the 𝑛 SID scores estimated using 

𝑓𝑆𝐼𝐷. If the final SID score, say 𝐹𝑆𝐼𝐷, for 𝐳 is greater than zero then we found a match 

otherwise no-match. Under these assumptions, we can now define the proposed version of 

the SID  𝐹𝑆𝐼𝐷  for a given 𝐳 using the following expression: 

𝐹𝑆𝐼𝐷 𝐳 𝐱
† 𝛿𝑆𝐼𝐷 = 𝐼 ({∑𝑓𝑆𝐼𝐷

𝑖  𝐳 𝐱𝑖 𝜓𝑆𝐼𝐷 𝛿𝑆𝐼𝐷 

𝑛

𝑖=1

} > 0)  (5.1) 

𝑓𝑆𝐼𝐷
𝑖  𝐳 𝐱𝑖 𝜓𝑆𝐼𝐷 𝛿𝑆𝐼𝐷 = 𝐼(𝛿𝑆𝐼𝐷 ≤ 𝜓𝑆𝐼𝐷 𝐳 𝐱𝑖 )  (5.2) 

    Where 𝜓𝑆𝐼𝐷 denotes the SID between two spectra (refer to Section 2.3.2.1) and 𝛿𝑆𝐼𝐷 is 

the threshold parameter of SID. The values of 𝜓𝑆𝐼𝐷 can range from 0 to ∞. A value of 

𝜓𝑆𝐼𝐷 = 0 shows a perfect match or correlation with zero divergence between two spectra. 

The lower the 𝜓𝑆𝐼𝐷 value, the better the level of match between the 𝐱† and 𝐳. 𝐼 ∙  is the 

unit step function defined by the equation of the following form: 

𝐼 𝐴  is assigned to {
           𝑖𝑓  𝐴 𝑖𝑠 𝑡𝑟𝑢𝑒
  0          𝑜𝑡ℎ𝑒𝑟 𝑖𝑠𝑒 

 (5.3) 

    A key step in our version of the SID method is the selection of the optimal 𝛿𝑆𝐼𝐷 ⊆ 𝜓𝑆𝐼𝐷 

value using  . The best parameter 𝛿𝑆𝐼𝐷 is determined by 5-fold CV with parameter tuning 

using a linear grid search technique with a grid space of 100 evenly spaced values over the 

interval [𝛿𝑚𝑖𝑛 𝛿𝑚𝑎𝑥]. 
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    Before the tuning procedure, we first need to define the possible interval of 𝛿𝑆𝐼𝐷 ∈

[𝛿𝑚𝑖𝑛 𝛿𝑚𝑎𝑥]. The minimum value that 𝛿𝑆𝐼𝐷 can take is 𝛿𝑚𝑖𝑛 = 0, while the maximum value 

needs to be properly selected to achieve a good generalization and maintain the balance 

between under-fitting and over-fitting of 𝛿𝑚𝑎𝑥. The selection of 𝛿𝑚𝑎𝑥 is also critical because 

it will directly affect the final classification result. In this regard, we compute a SID matrix, 

say ℎ′ ∈ ℝ𝑛×𝑛, whose elements represent 𝜓𝑆𝐼𝐷(𝐱𝑖 𝐱𝑗) ∀  ≤ 𝑖 ≤ 𝑛,  ≤ 𝑗 ≤ 𝑛, between 

all pair-wise pixel vectors of  . Next, we calculate a single threshold value 𝑇 from ℎ′ using 

multi-level Otsu’s method (Otsu, 1979) to compute 𝛿𝑚𝑎𝑥 = 𝑇 by means of the equation 

𝑇 = argmin
𝑇

(∑𝑝 𝑖  𝑖 − 𝜇1 
2

𝑇

𝑖=𝑇1

+ ∑ 𝑝 𝑖  𝑖 − 𝜇2 
2

𝑇2

𝑖=𝑇+1

)   (5.4) 

Algorithm 1. Pseudocode for threshold selection of the SMM 

1. Calculate SMM matrix using  = {𝐱𝑖  𝑦𝑖}𝑖  
𝑛       

      for 𝑖 =   𝑛 do 

           for 𝑗 =   𝑛 do 

                 ℎ′𝑖 𝑗 = 𝜓𝑆𝑀𝑀(𝐱𝑖 𝐱𝑗)                                                                                                ⊳ ℎ′ = SMM matrix 

           end 

      end 

2. Compute 𝛿𝑚𝑖𝑛 or 𝛿𝑚𝑎𝑥 using ℎ′ to create 100 evenly spaced values over the interval 𝛅 ∈ [𝛿𝑚𝑖𝑛 𝛿𝑚𝑎𝑥] for 

defining an optimal threshold 𝛿𝑆𝑀𝑀. 

3. The threshold tuning procedure in SMM is as follows: 

partition   into 5 equally sized parts          5   

for ∆ =    00 do 

 for  =   5 do                                                                                                                         ⊳ 5-fold CV 

      partition    into  𝑡𝑟𝑎𝑖𝑛 = { 𝐱′𝑙  𝑦𝑙 }𝑙  
𝑛  and  𝑡𝑒𝑠𝑡 = { 𝐱′′𝑙  𝑦𝑙 }𝑙  

𝑛  

      for 𝑗 =   𝑛  do 

              𝐻𝑗 =    𝐹𝑆𝑀𝑀(𝐱′′
𝑗 𝐱

† 𝛅 ∆ )                                                                                        ⊳ 𝐱† = {𝐱′′𝑙}𝑙  
𝑛  

      end 

       𝐴′
 = (∑  𝐻𝑗

𝑛 
𝑗  )/𝑛                                                                                            ⊳ 𝐴′ = Accuracy scores 

 end 

  𝐴′′ = (∑ 𝐴′
 

 
𝑖  )/                                                                                                        ⊳ 𝐴′′ = CVA score 

if  𝐴′′ <    &  𝐴′′ >= 𝑏𝐴′′  &  𝐂𝐎 𝐃𝐈𝐓𝐈𝐎   then 

    𝑏𝐴′′ = 𝐴′′                                                                                                 ⊳ 𝐂𝐎 𝐃𝐈𝐓𝐈𝐎  for SID: 𝛅 ∆ > 0 

    𝛿𝑆𝑀𝑀 =  𝛅 ∆                                                                                             ⊳ 𝐂𝐎 𝐃𝐈𝐓𝐈𝐎  for SCM: 𝛅 ∆ <   

end 

if  𝐴′′ <=    &  𝐴′′ >= 𝑏𝐴′′  &  𝐂𝐎 𝐃𝐈𝐓𝐈𝐎   then 
    𝑏′𝐴′′ = 𝐴′′ 
    𝛿′𝑆𝑀𝑀 =  𝛅 ∆  
end 

if  ∆ ==  00  &  𝑏𝐴′′ <=    &  𝑏′𝐴′′! = 0  then 
    𝑏𝐴′′ = 𝑏′𝐴′′ 
    𝛿𝑆𝑀𝑀 = 𝛿′𝑆𝑀𝑀 
end 

    if  ∆ ==  00  &  𝑏𝐴′′ == 0   then 

    𝛿𝑆𝑀𝑀 =  𝛿                                                                                               ⊳ 𝛿 = 0 for SID and 𝛿 =   for SCM 

end 

      end 
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where 𝑝 𝑖  represents the probability of the ratio value 𝑖 in ℎ′, 𝜇1 = ∑ 𝑝 𝑖 /𝑇
𝑖=𝑇1  1 and 

𝜇 = ∑ 𝑝 𝑖 /  
𝑇𝑚
𝑖=𝑇+1 , 𝑇  and 𝑇  indicate the minimum and maximum values in an array 

ℎ′,   = ∑ 𝑝 𝑖 𝑇
𝑖=𝑇1  and   = ∑ 𝑝 𝑖 𝑇𝑚

𝑖=𝑇+1 .  

Finally, using a set of if-then conditional statements, each value out of 100 evenly spaced 

grid points from the interval [𝛿𝑚𝑖𝑛 𝛿𝑚𝑎𝑥] are verified to find the optimal 𝛿𝑆𝐼𝐷 that produces 

the highest CVA (i.e., 𝑏𝐴′′). The detailed steps are included in Algorithm 1, where replace 

SMM with SID. After performing the SID training to select the optimal 𝛿𝑆𝐼𝐷, we use 

Equation (5.1) to perform pixel-wise shadow and illumination invariant classification for 

any 𝐳  

5.4.1.2 P  p     SCM 

Contrary to SID, SCM measures the similarity between two spectra using Pearson’s linear 

correlation coefficient (van der Meero and Bakker, 1997). The training process of SCM to 

select optimal threshold is similar to SID. For each 𝐳, the {𝑓𝑆𝐶𝑀}𝑖=1
𝑛  returns 𝑛 scores 

computed between 𝐱† = {𝐱𝑖}𝑖=1
𝑛  and 𝐳 , as a final score, we add all the 𝑛 SCM scores. 

Hence, the expression of SCM 𝐹𝑆𝐶𝑀 for any 𝐳 is given by 

 𝐹𝑆𝐶𝑀 𝐳 𝐱† 𝛿𝑆𝐶𝑀 = 𝐼 ({∑𝑓𝑆𝐶𝑀
𝑖  𝐳 𝐱𝑖 𝜓𝑆𝐶𝑀 𝛿𝑆𝐶𝑀 

𝑛

𝑖=1

} > 0)  
(5.5) 

𝑓𝑆𝐶𝑀
𝑖  𝐳 𝐱𝑖 𝜓𝑆𝐶𝑀 𝛿𝑆𝐶𝑀 = 𝐼(𝛿𝑆𝐶𝑀 ≥ 𝜓𝑆𝐶𝑀 𝐳 𝐱𝑖 )  (5.6) 

Where 𝜓𝑆𝐶𝑀 represent the SCM (refer to Section 2.3.2.2) and 𝛿𝑆𝐶𝑀 is the optimal 

threshold parameter of SCM. The values of the 𝜓𝑆𝐶𝑀 can range from −  (i.e., no similarity) 

to +  (i.e., perfect similarity). 𝛿𝑆𝐶𝑀 can take values in the bounded interval [𝛿𝑚𝑖𝑛 𝛿𝑚𝑎𝑥]. 

The interval values of 𝛿𝑆𝐶𝑀, i.e., 𝛿𝑚𝑖𝑛 and 𝛿𝑚𝑎𝑥, are set depending on the threshold 𝑇. The 

single threshold 𝑇 is calculated using multi-level Otsu’s method from SCM matrix ℎ′ =

𝜓𝑆𝐶𝑀(𝐱𝑖 𝐱𝑗) ∀  ≤ 𝑖 𝑗 ≤ 𝑛 (see Equation (5.4)). If 𝑇 ≥ 0 9, we set 𝛿𝑚𝑖𝑛 = 0 9 and 𝛿𝑚𝑎𝑥 =

𝑇 to determine the 𝛿𝑆𝐶𝑀 because 𝜓𝑆𝐶𝑀 values between [−  0 9  indicate a strong negative 

and weak positive correlation.  If 𝑇 < 0 9, the results may be suboptimal for datasets with 
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low interclass variances cases. A detailed procedure for SCM threshold selection is given 

in Algorithm 1, where substitute SMM with SCM. After the training phase, we now have 

the SCM threshold 𝛿𝑆𝐶𝑀 that is used to perform pixel-wise shadow and illumination 

invariant classification for any test instance 𝐳 using Equation (5.5). 

5.4.2 P  p     SI2CS 

This subsection describes the two main functional components of the third proposed 

method, i.e., SI2CS – OCC and RSM (see Figure 5.3). The top-level architecture of the 

SI2CS follows a two-stage cascade architecture in terms of input-output relationship where 

the output of OCC is fed as one of the inputs to RSM and whose output is the final result 

of SI2CS. The decision function of SI2CS is 𝑓𝑆𝐼𝐶𝑆 ∈ {0  }, where   denotes the KC 

(including the IS-KC and high IL-KC), and 0 denotes the UCs. The SI2CS algorithm is 

made up of two different phases, namely, the training phase (i.e., construction of the 

 

       

 

 

Figure 5.3: Architecture diagram of the proposed pixel-level shadow and 

illumination invariant classification using SI2CS method for the 

𝑖𝑡ℎ test pixel vector 𝐳𝒊. 

Block diagram: Version 2.1 : 31/03/2021 
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classifier) and the classification phase (i.e., usage of the classifier). The training phase of 

SI2CS follows a traditional supervised modeling approach. Therefore, we independently 

build both the OCC ‘𝑓𝑂𝐶𝐶’ and SMM ‘𝐹𝑆𝑀𝑀’ (using Algorithm 1) models using the available 

training set  . In this phase, we tune the classification model parameters of OCC and determine 

the optimal threshold of SMM. After completing the training phase of the SI2CS, we now have 

the 𝑛-list of free parameter values  = {𝜃    𝜃𝑛} of the model which is required for performing 

classification tasks. In the classification phase of the SI2CS algorithm, we predict the label of the 

unknown test pixel vector using the unified framework of the trained classification models, as 

shown in Figure 5.3. A detailed description of the two components of the SI2CS method follows.  

5.4.2.1 Stage-I: OCC 

The first stage of the SI2CS algorithm performs OCC to characterize an input test pixel 

vector. In this study, we adopt one-class SVM (OCSVM) (refer to Section 2.3.1.1) and 

support vector data description (SVDD) (refer to Section 2.3.1.2) as OCC techniques in the 

SI2CS algorithm. As above mentioned, the OCC model training is done independently 

using   to formulate an optimal decision boundary, i.e., 𝑓𝑂𝐶𝐶. In the classification stage, the 

trained OCC model 𝑓𝑂𝐶𝐶 ∈ {−  + } is used to perform the binary class predictions where 

−  denotes UC group and +  indicates IL-KC group. 

5.4.2.2 Stage-II: RSM 

In the second stage of the SI2CS method, RSM uses a decision rule to make shadow and 

illumination invariant class predictions. As shown in Figure 5.3, the RSM has two 

subcomponents, namely the decision rule and SMM. As mentioned earlier, the learning 

phase of RSM finds the optimal threshold 𝛿𝑆𝑀𝑀 using Algorithm 1. In the classification 

phase of RSM, we make use of a decision rule-set that states when to accept 𝐳 for 

classification using SMM. If 𝑓𝑂𝐶𝐶 = + , then 𝐳 is rejected for SMM classification and 

labeled as the positive class. Otherwise, it is classified using SMM. As shown in Figure 

5.3, RSM has two inputs, namely, 𝐳, and the label 𝑓𝑂𝐶𝐶 𝐳  from OCC (Stage-I). The output 

of the RSM 𝑓𝑆𝐼𝐶𝑆 ∈ {0  } is the final classification result of the SI2CS algorithm. The 

decision rule of SMM for training and predictions used in RSM, Stage-II of SI2CS, is as 
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follows. 

         Rule: 

(5.7)         𝐴𝑠𝑠𝑖𝑔𝑛          𝑓𝑆𝐼𝐶𝑆 𝐳 → +      𝑖𝑓    𝑓𝑂𝐶𝐶 𝐳   = +   

        𝑂𝑡ℎ𝑒𝑟 𝑖𝑠𝑒  𝐷𝑓𝑆𝐼𝐶𝑆 𝐳 →  𝐹𝑆𝑀𝑀 𝐳 𝐱† 𝛿𝑆𝑀𝑀   

In the above-given decision rule, replace  𝐹𝑆𝑀𝑀 by  𝐹𝑆𝐶𝑀 if the SCM method is used 

otherwise 𝐹𝑆𝐼𝐷 if the SID method is used. 

5.5 Experimental Results and Discussion 

In this section, we provide a brief description of the experimental setup and metrics used 

to evaluate the classifiers. Further, to quantify and validate the performance of the 

classifiers using the obtained classification results, a detailed discussion of the results is 

also described in this section.   

5.5.1 Experimental design of various real-world classification scenarios 

An experimental setup is designed to test the classifier performance on remote sensing 

imagery containing shadows and varying illumination effects. The setup is made up of 

different types of test case classification scenarios designed from indoor-outdoor recorded 

imageries consisting of complex shadow regions. Our experiments split the total classes in 

each dataset into two groups: 1) IL classes, 2) IS classes. Each test case scenario contains 

three disjoint sets: KC set, UCs set, and KC shadow set. A dataset with 𝑖 IL and 𝑖 IS classes 

has 𝑖 test cases or experiments, wherein in each case, we consider one out of 𝑖 IL classes 

as KC and the remaining IL-KCs as UCs. For example, the Specim HSI dataset has four 

IL classes, and four IS classes have four test case scenarios. A typical use of each test case 

or an experiment for a given dataset with 𝑚 IL-KCs can be summarized in three steps 

below 

1. Select one out of 𝑚 IL information classes as KC for a given dataset and perform the 

training on dataset   that is sampled only from IL-KC set, i.e., 𝑦Ω. 

2. Use the trained classification model for predicting the data that includes samples from 

all class examples, i.e., IL-KC set, UCs set, and IS-KC set. 
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3. Repeat step 1 and step 2 until each of 𝑚 IL-KCs is selected five times. For each 

experiment of 5𝑚 trails, calculate the confusion matrix and all required accuracy 

metrics. As a final result, estimate the mean and SD of the performance evaluation 

metrics across all 5𝑚 trials or realizations. 

5.5.2 Evaluation metrics 

To systematically evaluate the classification accuracy performance of various algorithms, 

we used four different metrics derived from the confusion matrix. The four objective 

evaluation metrics are OA, AA, FPR, and FNR. The OA and AA are the ratios taken into 

account for correct classification, whereas the FPR and FNR are the ratios for incorrect 

classification count. Hence the OA and AA are expected to be higher, while FNR and FPR 

are expected to be relatively lower for efficient classification. The quantitative 

classification results calculated using the four metrics are presented in terms of two 

statistics to obtain representative accuracy and error estimates. First, as the mean of each 

metric across all 𝑚 realizations, and secondly, as the empirical SD of each metric about 

the mean across all the 𝑚 realizations. In addition to the four classification accuracy 

measures, one more metric, we measured the detection performance of IS-KC pixels by 

calculating the KC shadow detection rate  𝜂   and it is defined as follows: 

 𝜂 =
Number of reference KC shadow pixels detected

 otal number of reference KC shadow pixels
      (5.8) 

    Therefore, the expected value and the SD of OA, AA, FPR, FNR, and 𝜂 across all the 

experimental realizations are calculated to be the final and conclusive results.  

5.5.3 Results 

In this subsection, quantitative and qualitative results are presented for the six considered 

datasets using OCSVM, SVDD, SID, SCM, and four variants of SI2CS. We ran all the 

classification experiments on a computer with an Intel Xeon processor 3.6 GHz CPU with 

64 GB RAM and using MATLAB tool. All the datasets used in the current study are 
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Table 5.1: Results for all six datasets and eight classifiers containing traditional 

and shadow invariant methods. The mean and SD of OA (in %), AA 

(in %), FNR (in %), and FPR (in %) are presented for five 

realizations of each IL information class relative to a dataset. The 

best result for each metric relative to a dataset is shown in bold. 

D
a

ta
se

ts
 

M
et

ri
cs

 Traditional methods Proposed shadow-invariant classification algorithms 

OCSVM SVDD SID SCM 

SI2CS  

(OCSVM+ 

SID) 

SI2CS 

(SVDD+SID) 

SI2CS 

(OCSVM+SCM) 

SI2CS 

(SVDD+SCM) 

Mean 

 (SD) 

Mean  

(SD) 

Mean 

 (SD) 

Mean 

 (SD) 

Mean 

 (SD) 

Mean  

(SD) 

Mean 

 (SD) 

Mean  

(SD) 

W
V

-3
 

OA 
87.44 

(8.8) 

81.88 

(12.48) 

95.72 

(5.73) 

93.2 

(8.43) 

95.72 

(5.73) 

95.72 

(5.73) 

93.29 

(8.41) 

93.23 

(8.4) 

AA 
75.2 

(2.92) 

63.84 

(3.61) 

94.33 

(5.98) 

84.2 

(10.06) 

94.33 

(5.98) 

94.33 

(5.98) 

84.63 

(9.88) 

84.27 

(10.04) 

FNR 
15.34 

(11.45) 

20.1 

(14.32) 

3.32 

(4.65) 

8.21 

(10.61) 

8.1 

(10.58) 

3.32 

(4.65) 

3.31 

(4.65) 

8.18 

(10.58) 

FPR 
0.05 

(0.11) 

0 

(0) 

8.85 

(20.24) 

0 

(0) 

0.05 

(0.11) 

8.87 

(20.23) 

8.85 

(20.24) 

0 

(0) 

C
u

-D
 

OA 
67.47 

(1.21) 

59.06 

(4) 

96.44 

(1.45) 

87.4 

(6.82) 

98.02 

(2.08) 

96.61 

(1.61) 

87.55 

(6.75) 

87.4 

(6.82) 

AA 
67.07 

(3.3) 

58.85 

(1.8) 

96.55 

(1) 

88.82 

(6.07) 

98.24 

(1.84) 

96.74 

(1.17) 

88.98 

(5.98) 

88.82 

(6.07) 

FNR 
39.67 

(4.15) 

45.18 

(5.77) 

6.95 

(3.38) 

6.55 

(6.75) 

6.21 

(6.91) 

4.16 

(4.38) 

6.66 

(3.65) 

6.55 

(6.75) 

FPR 
0 

(0) 

0 

(0) 

0 

(0) 

15.04 

(15.89) 

14.99 

(15.84) 

0 

(0) 

0 

(0) 

15.04 

(15.89) 

H
a

rv
a
r
d

 

OA 
76.87 

(13.25) 

71.9 

(14.96) 

98.32 

(1.22) 

98.26 

(1.46) 

98.44 

(1.24) 

98.34 

(1.22) 

98.35 

(1.47) 

98.27 

(1.45) 

AA 
66.47 

(3.26) 

58.81 

(2.39) 

95.89 

(4.63) 

95.54 

(5.59) 

96.02 

(4.69) 

95.91 

(4.63) 

95.69 

(5.52) 

95.58 

(5.55) 

FNR 
26.22 

(15.54) 

29.85 

(16.14) 

2.44 

(1.6) 

2.27 

(1.45) 

2.12 

(1.45) 

2.23 

(1.51) 

2.4 

(1.58) 

2.26 

(1.44) 

FPR 
0 

(0) 

0 

(0) 

0.02 

(0.03) 

0.43 

(0.95) 

0.43 

(0.95) 

0.02 

(0.03) 

0.02 

(0.03) 

0.43 

(0.95) 

C
u

-T
 

OA 
70.65 

(16.89) 

59.5 

(14.29) 

89.11 

(10.67) 

90.01 

(11.27) 

89.25 

(10.59) 

89.11 

(10.67) 

90.14 

(11.38) 

90.03 

(11.29) 

AA 
72.83 

(10.69) 

60.58 

(5.4) 

90.85 

(8.57) 

91.73 

(9.21) 

90.98 

(8.51) 

90.86 

(8.57) 

91.89 

(9.35) 

91.76 

(9.24) 

FNR 
35.82 

(18.77) 

44.34 

(14.39) 

18.08 

(17.66) 

16.55 

(17.91) 

16.35 

(18.09) 

17.91 

(17.58) 

18.07 

(17.66) 

16.52 

(17.95) 

FPR 
0 

(0) 

0 

(0) 

0 

(0) 

0 

(0) 

0 

(0) 

0 

(0) 

0 

(0) 

0 

(0) 

S
p

e
c
im

 

OA 
84.92 

(16.86) 

79.38 

(21.63) 

88.88 

(13.51) 

89.4 

(12.98) 

89.37 

(12.92) 

88.93 

(13.53) 

89.75 

(12.96) 

89.51 

(13.03) 

AA 
74.78 

(5.81) 

62.38 

(5.18) 

81.91 

(6.01) 

81.49 

(7.51) 

82.71 

(5.84) 

82.13 

(6.13) 

82.85 

(6.93) 

82.02 

(7.25) 

FNR 
18.38 

(21.71) 

22.14 

(23.58) 

15.11 

(19.79) 

14.54 

(19.47) 

14.21 

(19.5) 

14.71 

(19.37) 

15.05 

(19.82) 

14.44 

(19.53) 

FPR 
0 

(0) 

0 

(0) 

0.29 

(0.54) 

1.4 

(3.21) 

1.3 

(3.16) 

0.28 

(0.52) 

0.29 

(0.53) 

1.35 

(3.18) 

G
S

 

OA 
81.81 

(12.78) 

75.66 

(18.29) 

91.99 

(4.12) 

94.83 

(1.26) 

92.05 

(4.11) 

89.71 

(6.47) 

94.88 

(1.2) 

92.37 

(6.73) 

AA 
76.77 

(4.15) 

64.25 

(1.49) 

86.24 

(3.28) 

87.7 

(6.97) 

86.37 

(3.17) 

85.19 

(5.13) 

87.82 

(6.86) 

86.39 

(8.53) 

FNR 
21.8 

(20.35) 

28.07 

(22.8) 

13.43 

(10.97) 

7.79 

(2.23) 

13.24 

(10.56) 

7.85 

(2.01) 

7.75 

(2.24) 

13.36 

(10.94) 

FPR 
9 

(23.51) 

0 

(0.01) 

0 

(0) 

0 

(0) 

8.4 

(22.01) 

8.53 

(22.39) 

0 

(0) 

0 

(0) 
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normalized over the interval [0  ]. A special program is developed using the MATLAB-

based software environment to train all eight algorithms using the same set of training 

samples that belong to the selected IL-KC and calculate results for objective evaluation. 

For OCSVM and SVDD, the RBF kernel provided by the MATLAB-LIBSVM tool is 

considered and used (Chang and Lin, 2011). In this study, only 5% of the available ground 

truth reference data is used to train the algorithms, and the selection of the training set is 

made random. During OCSVM training, the model hyperparameters have been traced in 

the ranges of 𝑣 = {0 0  0 0    0  } and 𝛾 =  𝛽, 𝛽 = {−4 −3   4}. In SVDD training, 

the parameter 𝐶 was searched over the interval   /𝑛  ] with an equal grid spacing of 0    

and 𝛾 is searched over the same grid space which is used in OCSVM. For Stage-I in SI2CS 

variants, we use a similar tuning procedure that is used for learning OCSVM and SVDD 

models. During the learning phase of any given algorithm, the adaptive selection scheme 

of free parameters, hyperparameters, and the optimal threshold is performed using five-

fold cross-validation and grid searching techniques. And in the classification phase, all the 

experimental results are calculated on the test data consisting of all class examples of IL-

KC, IS-KC, and UCs. 

    As mentioned earlier, although it is difficult to generate the ground truth for shadow 

regions in real-world scenes, we manually collected the candidate reference pixels of 

shadows for quantitative measurements of classification accuracies. Table 5.1 displays the 

results obtained for quantitative and qualitative comparison of the performance of all eight 

algorithms using the six datasets in terms of mean (SD) of OA, AA, FPR, and FNR. The 

results show that there is considerable variability among the classifiers in terms of OA, 

AA, FNR, and FPR, thus indicating the suitability of combination schemes of OCC and 

SMMs for forming the SI2CS.         

    The variability of OA and FNR are less significant than AA and FPR between the 

classical methods and the proposed methods for the WV-3 MSI dataset. There is a  3 8%, 

30.5%,  6 8%, and 8 9% resulted from the difference between the maximum and 

minimum OA, AA, FNR, and FPR in the WV-3 MSI, whereas it is about 39%, 39 4%, 

4 %, and  5% for the Cu-D HSI. Among the remaining four HSIs, the Harvard image has 
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the highest mean classification accuracies of about 98 4% OA and 96% AA. And the worst 

mean FNR of about 45% is for Cu-D using SVDD, and  5% mean FPR is for GS using 

SCM resulted among the four HSIs. However, Harvard and Cu-D datasets have the highest 

mean OA and AA of about 98 4% and 98  %, respectively, among the six datasets. The 

best mean FNR of    % resulted in Harvard, whereas the lowest mean FPR for all six 

datasets. SI2CS has resulted in the highest classification accuracies and lowest FNR and 

FPR out of eight methods with respect to the classification techniques. The combination of 

selected classifiers in the SI2CS has resulted in a 4  % to 30 5% improvement with the 

OCSVM+SID combination scheme and 6 7% to    4% of improvement with the 

OCSVM+SCM against individual methods. Similarly, for the SI2CS with the SVDD+SID 

and SVDD+SCM combination schemes, there is about a 9  % to 37 5% and     % to 

30 5%  increase in accuracy. It can be noted that the varying SD is due to the change in 

training samples that is influencing the performance. Stage-I can reliably classify IL-KC 

samples, while Stage-II can perform the shadow and illumination invariant classification 

on UC pixels labeled by Stage-I.  

    As shown in Figures 5.4 and 5.5, the obtained classification maps show the qualitative 

results of the proposed algorithms and the compared traditional algorithms for the selected 

test case realization of each dataset. In all the maps shown in Figures 5.4 and 5.5, OCSVM 

and SVDD resulted in poor thematic accuracy for shadows and OoD KC pixels. Visual 

inspection of Figures 5.4 and 5.5 reveal that the proposed SI2CS algorithms produced 

smoother and accurate classification maps than OCSVM, SVDD, SID, and SCM. The 

     

 

Figure 5.6: Comparison of KC shadow detection results obtained by different 

methods using the considered datasets. The performance measure 

is the mean (using bar) and SD (using green circular dot) of 𝜂. 
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Figure 5.7: Visualization of the classification errors (in red) obtained for 

Specim HSI using selected classifiers for the specific realization 

of leaf target KC for available ground truth of IL and IS pixel 

vectors. 
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efficiency of KC shadow detection rate  𝜂  of the eight classifiers is measured, and 

summary statistics of 𝜂 results are graphically presented using a bar chart plot in Figure 

5.6. The visual inspection of Figure 5.6 confirms that the mean and SD of 𝜂 of SVDD is 

the first minimum, and OCSVM is the second minimum among the considered methods. 

The mean (SD) of 𝜂 is equal for all the proposed algorithms. The best 𝜂 estimates are 

obtained for the Cu-D image using the proposed algorithms. For illustrative purposes, 

Figure 5.7 displays the classification maps obtained using OCSVM, SID, SCM, and SI2CS 

(OCSVM+SCM) classifiers for the leaf target class in Specim dataset. The classification 

maps in Figure 5.7 provide better insights into the errors produced by the classifiers for IS-

KC pixels. In this specific realization, the training set included 130 pixels of IL leaf KC, 

whereas the testing set included 24647 (2592 IL-KC, 19096 UCs, and 2959 IS-KC).  

    The percentage results (OA, AA, FNR, FPR, 𝜂) of OCSVM, SID, SCM, and SI2CS 

shown in Figure 5.7 are (87.8, 72.9, 0, 13.5, 0.5), (96.8, 92.8, 0, 3.96, 34.3), (97.1, 93.6, 0, 

3.55, 77.7), and (97.2, 93.9, 0, 3.92, 77.7), respectively. Overall, the proposed framework 

SI2CS with the two combination schemes of OCSVM+SCM and OCSVM+SID presented 

substantially higher accuracy performance for shadow and illumination invariant 

classification. 

5.5.4 Discussion 

The obtained results show that the proposed algorithms offer potential solutions to the 

shadow and biased lighting-related problems in classification tasks. However, several 

factors can hinder or limit the accuracy performance for shadow and illumination invariant 

classification. For instance, the ever-present within-class variability in shadow regions is 

one of the significant factors that challenge performance. Variability with respect to 

shadow reflectance of the target class is a probable source of uncertainty in classification. 

Although the proposed algorithms are specifically designed to account for the shadow 

variability, the success mainly depends on the training set used for the model learning. That 

is to say, the diverse collection of IL target class training samples better the performance 

of the algorithm in minimizing the omission errors for shadows in shadow and illumination 
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invariant classification. If the training samples are not diverse, then the SI2CS performance 

is better than the SMMs and the classical methods. This difference is because the SI2CS 

combines the advantages of the OCC and SMM. Some other factors that challenged the 

performance of shadow invariant classification are dimensionality of data, mixed pixels, 

reflective surface, and interclass variance.  

The task of performing a shadow invariant classification of MSIs is relatively difficult 

than HSIs using spectral features alone due to the following reasons. First and foremost is 

its lower dimensionality (e.g.,  = 8) than HSIs, making it insufficient for accurate 

similarity matching between IL and IS spectra. Second, MSIs, unlike HSIs, are produced 

by sampling at discrete wavelengths with varying spectral resolutions for each channel or 

band. For these reasons, the interclass variance is relatively low for target and non-target 

materials in MSIs than HSIs. This performance trend between MSI and HSI in terms of 

metrics can be observed in Table 5.1, Figures 5.4, 5.5, 5.6, and 5.7. Therefore, caution must 

be exercised while collecting the training samples and performing shadow and illumination 

invariant classification of MSIs. 

In this chapter, the current study has also performed ablation experiments 

simultaneously by comparing the results of SCM, SID, OCSVM, SVDD against the 

combination schemes of SI2CS. The presented experimental results reveal that shadows in 

imagery are the primary contributor to omission errors. The difference in using the two-

stage models versus individual models is visible from Figures 5.4 and 5.5, especially for 

the Specim HSI data. The role of OCC and SMM methods in the SI2CS is to correctly 

predict the IL-KC samples and concurrently increase the mapping subspace for classifying 

the IS-KC samples.  

5.6 Chapter Conclusions 

We present a new category of shadow and illumination invariant classification algorithms 

using spectral curve features for high-resolution imagery. We evaluated the performance 

of our methods using several image classification scenarios designed from various indoor-

outdoor scenes having complex shadows. Our results demonstrate that among the three 
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proposed approaches, the SI2CS achieved the highest performance by classifying classes 

beneath shadows into informational LULC types with minimum errors. The proposed 

algorithms show promise for interesting and practical applications because of their 

simplicity and ease of implementation than competing techniques. Our algorithms have the 

potential to offer an affordable alternate to perform shadow and illumination invariant 

image classification by exploiting the latent power of spectroradiometric information 

present in multispectral and hyperspectral imagery. 
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CHAPTER 6 

OPEN-SET IMAGE CLASSIFICATION ALGORITHMS 

FOR REAL-TIME ENVIRONMENTS 

Prelude: This chapter presents a set of new supervised image classification algorithms that 

are capable of operating with stable performance in both closed-set and open-set 

environments. In addition, this chapter also presents hardware architecture designs of 

FPGA for demonstrating and comparing the speed of computation of the proposed efficient 

algorithms. Several classification experiments are carried out on six different multi-sensor 

and multi-platform MSIs and HSIs with varying spatial and spectral resolutions containing 

different LULC settings. The accuracy performance of the proposed methods is compared 

against SVM, SC2S, DCNN, and OSNNNNDR. The experimental evaluation of the FPGA 

architecture designs of the proposed methods is performed using metrics such as timing, 

speed, and logic capacity, and power usage. 

6.1 Introduction4 

Image classification is the process of uniquely assigning a single class label among a finite 

set of labels for each pixel in an image. It is one of the most active and vibrant areas of 

research in the field of remote sensing because of its potential for large-scale use in a wide 

variety of practical imaging applications (Scheirer, Jain and Boult, 2014; Ghamisi et al., 

2017). Taking advantage of spectral information in image data like MSIs/HSIs, a plethora 

of innovative image-driven applications are practically achievable. Such applications 

 
4 This chapter will be published as an article and currently is in review in Engineering 

Applications of Artificial Intelligence, with the title: “A Real-time SC2S-based Open-set 

Recognition in Remote Sensing Imagery”. Authors: Dubacharla Gyaneshwar and Rama Rao 

Nidamanuri. 
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include, for example, monitoring and mapping Earth system dynamics, Planetary sciences, 

health care, homeland defense, precision agriculture, and industrial automation, etc 

(Eismann, 2012; Khan et al., 2018). Many of these applications operate in open-set, and 

dynamic environments where addressing uncertainties and computational bottlenecks 

become crucial and immediate assessment is required (Wang et al., 2016; Dubacharla and 

Nidamanuri, 2020; Dubacharla and Nidamanuri, 2021). Several classification algorithms 

have been proposed in the literature for transforming the massive amounts of collected 

remote sensing imagery data into the user-desired level of scientific understanding. It is 

well-known that existing methods work accurate and efficient for closed-set recognition 

(CSR) settings but are typically ineffective for open-set recognition (OSR) scenarios 

(Scheirer, Jain and Boult, 2014; Ghamisi et al., 2017). In the most basic sense, a static or 

closed-set environment means that all the information about the testing classes is available 

at training time. Conversely, an open-set recognition (OSR) operates under the assumption 

that not all testing classes are known at training time, and UCs can be submitted to the 

trained model during testing (Júnior et al., 2017). Figure 6.1 illustrates the comparison of 

image analysis using OSR and CSR in terms of four factors such as processing time, 

training information, computational resource, and supervision. As aforementioned, 

practical applications of image analysis and computer vision act in dynamic or open-set 

(usually uncertain or unknown) environments where addressing uncertainty and 

     

  

Figure 6.1: An illustration of several fundamental steps involved in digital 

image classification. The main emphasis is given to assessing the 

choice and performance of image analysis scheme to achieve 

classification or recognition tasks that is independent of 

application environments. 
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computational requirements is a critical component for success. As the scope of uncertainty 

in remote sensing is vast enough, it is essential to note that the focus of the current study is 

directed towards estimating the uncertainty (bound) due to the presence of UCs in image 

classification tasks. 

     The inherent uncertainty in classification tasks, for example, includes incomplete 

knowledge of labeled examples and the unknown information about the actual number of 

classes in the image, which are both challenging and yet unsolved problems. However, the 

former one has been extensively researched than the latter one. This fact has motivated us 

to define the objective of the present paper to address the ubiquitous challenge of 

minimizing (reducing) UCs uncertainty of a classifier. Typically, the examples of UCs are 

the test samples that are sufficiently different from ID, i.e., KCs training distribution 

(Scheirer, Jain and Boult, 2014; Júnior et al., 2017; Dubacharla and Nidamanuri, 2021). 

Even though machine learning-based classification techniques have achieved high 

accuracy, they produce omission errors in their predictions for unseen future instances. 

These erroneous predictions by a classifier are referred to as substitution errors or 

undetected errors, which are highly related to the forced assignment problem. The forced 

assignment problem arises due to the incomplete knowledge of the actual number of 

possible information classes during training (Muzzolini, Yang and Pierson, 1998). As a 

     

Figure 6.2: An example to show the advantage of global and local decision 

boundary usage by classifiers for a four-class classification 

problem. The scatter plot represents the two-band data 

distribution of four classes.  
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result, the UC or OoD samples are forcefully labeled as one of the KCs. Thus, developing 

novel algorithms capable of providing stable classification performance for both OSR and 

CSR tasks is necessary for real-world applications (Khan et al., 2018; Dubacharla and 

Nidamanuri, 2021). 

    In this work, our goal is to understand the forced assignment problem of supervised 

classifiers and propose rational algorithmic solutions that can alleviate this problem. In a 

recent paper in this journal (Dubacharla and Nidamanuri, 2020), we raised the research 

interest towards the open-set classification problem in the field of remote sensing, where 

UCs are encountered during testing. This is a critical and challenging problem to tackle. 

As an initial solution, we proposed an algorithm called supervised cascaded classifier 

system (SC2S), which showed a promising future for classification tasks in an open-set 

scenario. This chapter refers to the SC2S method as class-aware global SC2S (CAG-SC2S), 

a suitable domain name for distinction with the proposed local version of SC2S. In essence, 

the CAG-SC2S minimizes the false positives by partitioning the mapping feature space 

region separately for KCs and UCs. However, CAG-SC2S still maps several UC samples 

as one of the KCs. This is because CAG-SC2S considers a global level boundary for 

discriminating KCs and UCs (Homenda and Jastrzebska, 2015). In this regard, we 

introduce a new classification algorithm called the class-aware local SC2S (CAL-SC2S), 

where the class-specific decision boundary is used for mapping (see Figure 6.2). Moreover, 

an efficient improvement to the current model architecture of CAG-SC2S is also proposed, 

and FPGA architectures are also designed to demonstrate the computational advantage. 

The proposed CAL-SC2S algorithm is based on SC2S and extends its general idea and 

scope to solve the forced assignment problem for UCs in real-world environments.  

6.2 Problem Statement 

An MSI/HSI 𝐗 ∈ ℝ𝑎×𝑏×𝑑 having  -spectral bands for every  𝑎 × 𝑏  spatial pixel can be 

represented as an array of 𝑁 pixel vectors  𝐱𝑖 ∈ ℝ𝑑   𝑖 =     𝑁  known as a data matrix, 

say 𝑋 = [𝐱  𝐱  𝐱𝑁] ∈ ℝ𝑑×𝑁. For each 𝐱 in 𝐗, there exists a corresponding discrete class 

label 𝑦 that belong to the set of all possible classes or Universum classes 𝑦Ψ ∈ {    𝑐} 
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(where 𝑐 is the actual number of information classes) present in the given scene. This 

mapping objective can be achieved by using a classification technique with supervised 

approaches. To perform supervised classification of 𝐗, we require sample data or training 

data of the classes. However, collecting data of the full extent of information classes in any 

given scene of study can be difficult, expensive, and is not always possible (Scheirer, Jain 

and Boult, 2014; Júnior et al., 2017; Dubacharla and Nidamanuri, 2021). In such cases, 

information about only a subset of classes, i.e., classes of interest, are only available.  

Let 𝑦Ω ∈ {    𝑚} be a set of 𝑚 KCs  𝑚 < 𝑐  and 𝑦℧ = {𝑦 ∈ 𝑦Ψ|𝑦 ∉ 𝑦Ω} be a set of 

 𝑐 − 𝑚  UCs which are the absolute complement of 𝑦Ω (i.e., 𝑦Ω ∪ 𝑦℧ = ∅), then we can 

define 𝑦Ψ = 𝑦Ω ∪ 𝑦℧. We assume that the classifier is trained with a suitable set of 

representative training data that belong to the KCs. Our proposed SC2S method aims to 

reduce the false-known predictions by classifying each pixel vector to one of the KCs (𝑦Ω), 

otherwise as a UC (𝑦℧). 

6.3 Datasets Used 

We used six different sources of multi-platform and multi-sensor spectral images (two 

MSIs each from WorldView-3, Tertracam Micro-MCA6, and four HSIs each from 

Hyperspec VNIR-C, AVIRIS-NG, ROSIS-3, Hyperspec VNIR-E). The six images with 

different spatial and spectral resolutions cover several land cover categories and sites with 

varying complexities. The six datasets were selected to form a complete and non-trivial 

experimental setup to assess the generalization of any given methods. Three-band 

composites and ground truth maps of the six images are shown in Figure 6.3 and Figure 

6.4. 

WV3 image: The spaceborne WV3 MSI is from the DigitalGlobe and distributed 

by the SpaceNet. The WV3 was acquired, on 15th October 2015, over the city of Mumbai, 

India, under clear sky conditions (SpaceNet on Amazon Web Services (AWS)., 2021). This 

data is pan-sharpened satellite imagery comprising of  300 ×  300 spatial pixels, each 

having a very high-spatial resolution of 30 cm, and eight spectral bands were collected in 
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Figure 6.3: (a) RGB image and (b) reference map of WV3 MSI data. (c) RGB 

image and (d) reference map of R18 MSI data.  (e) RGB image and 

(f) reference map of ANG HSI data. 
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the spectral range 0.4 to 1.04 𝜇m with a varying spectral resolution of 0.04 to 0.68 𝜇m. 

There are 21197 ground-truth reference samples available for eight different information 

classes. As shown in Figures 6.3(a) and 6.3(b), the eight dominant LULC types in this 

study site include pool water, sea water, road, beach sand, roof, railway tracks, buildings, 

and white vehicles. 

 R18 image: The R18 is a very-high resolution MSI dataset provided by the 

Rochester Institute of Technology (Kemker, Salvaggio and Kanan, 2018). The airborne 

image was captured on 29th August 2016 with the Tetracam Micro-MCA6 multispectral 

imaging sensor mounted on-board on a DJI-S1000 octocopter and flown over the Hamlin 

Beach State Park, New York, USA. The image has a spatial dimension of 3361×3241 

pixels with a very high spatial resolution of 4.7 cm. It has six spectral bands in the 

wavelength range of 0.4 to 0.9 𝜇m with a varying spectral resolution of 0.04 to 0.16 𝜇m. 

This six-band dataset has 24788 number of ground truth reference pixels for six 

information classes. The LULC classes in this study site are vegetation, water, road, beach, 

roof1, and roof2. Figures 6.3(c) and 6.3(d) show the true color composition image and 

ground truth map, respectively. 

ANG image: The ANG HSI dataset was acquired over the urban area of the 

Ahmedabad region, India, in January 2016. The ANG image has a spatial dimension of 

750×565 pixels with a fine spatial resolution of 4 m and has 351 spectral bands in the 

wavelength range of 0.38 to 2.51 𝜇m with a spectral resolution of 0.05 𝜇m. There are 5263 

ground-truth reference pixel vectors available for six information classes. The different 

land use categories in the study site are asphalt, building, soil, river water, lake water, and 

vegetation. Figures 6.3(e) and 6.3(f) show the true color composition image and ground 

truth reference map, respectively, for the ANG dataset. 

CHK image: The airborne CHK HSI dataset is provided by Space Application 

Laboratory, Department of Advanced Interdisciplinary Studies, the University of Tokyo 

(Yokoya and Iwasaki, 2016). The dataset was acquired using a Headwall Hyperspec-

VNIR-C imaging sensor mounted on aircraft and flown over agricultural and urban areas 
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Figure 6.4: (a) RGB image and (b) reference map of CHK HSI data. (c) RGB 

image and (d) reference map of PC HSI data.  (e) RGB image and 

(f) reference map of TI HSI data. 
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in Chikusei, Ibaraki, Japan, on July 29, 2014. The scene consists of 2318×2136 spatial 

pixels with a high spatial resolution of 2.5 m and has 128 spectral bands in the spectral 

range from 0.363 to 1.018 𝜇m with a spectral resolution of 0.005 𝜇m. There are 73941 

number of ground truth reference pixels available for 16 information classes. The LULC 

categories in the study site are impervious surfaces, soils, and vegetation. Figures 6.4(a) 

and 6.4(b) shows the true color composition image and ground truth map, respectively. 

Pavia center (PC) image: The airborne PC HSI is provided by Prof. Paolo Gamba 

from the Telecommunications and Remote sensing laboratory (TRSL), University of Pavia, 

Italy. The ROSIS dataset was acquired during a flight campaign by ROSIS-03 sensor, in 

July 2001, over the University of Pavia, Italy, under cloud-free sky conditions. This data 

comprising of  096 × 49  spatial pixels, each having a high-spatial resolution of 1.3 m 

and 102 spectral bands (after removing the water absorption and bad bands), was collected 

in the spectral range of 0.43 to 0.86 𝜇m with a nominal spectral resolution of 0.04 𝜇m. 

There are 40429 ground truth samples available for nine information classes. Figures 6.4(c) 

and 6.4(d) show the true color image and ground truth map, respectively, for the PC image.  

Terrestrial-IIST (TI) image: The outdoor TI HSI captured the natural terrestrial 

scene of one of the pathways in the IIST campus, Kerala, India, on 27th February 2020. The 

TI dataset was acquired using a Headwall VNIR-E sensor mounted on a tripod stand. It has 

941×1551 spatial pixels with a very-high nominal spatial resolution of 1 cm and has 285 

spectral bands in the wavelength range 0.4 to 0.72 𝜇m with a spectral resolution of 0.01 

𝜇m. The number of available ground truth reference pixels is 17113 for five classes. This 

study site consists of five predominant LULC categories: road, white lane, vegetation, 

unfed grass, and shadow. Figures 6.4(e) and 6.4(f) show the true color composition and 

ground truth map, respectively, for the TI image. 

6.4 Methodology 

This section provides a brief description of the existing CAG-SC2S and the proposed CAL-

SC2S methods used for generating different variants of CA-SC2S algorithms. Further, 
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different classification model architectures of CA-SC2S and their FPGA-based hardware 

design modules are also described in this section. 

6.4.1 CAG-SC2S 

The CAG-SC2S was introduced by Gyaneshwar et al. as a supervised classification 

technique for OSR tasks that can make class predictions even in the presence of UCs. The 

idea behind the CAG-SC2S is to describe a discriminant function that can merge the 

objective of novelty detection and classification for efficient OSR. To ensure the efficient 

performance of the classification model, we combine the classification techniques from 

different modalities. The schematic diagram in Figure 6.5 shows that the CAG-SC2S model 

architecture is a two-stage interconnected cascade system. The first stage of CAG-SC2S is 

the global supervised novelty classifier (G-SNC) designed to achieve novelty detection, 

whereas the second stage is the rule-based supervised classifier (RSC) in which the 

supervised mapping is performed based on a rule-set. A brief explanation of the two stages 

in the CAG-SC2S algorithm is described as follows. 

6.4.1.1 Stage-I: G-SNC 

The G-SNC is the first stage of the two-stage system (see Figure 6.5), which uses a 

supervised novelty classifier as the base classification technique to formulate a binary 

classification problem. The G-SNC is flexible to use any desired choice of novelty 

detection technique (e.g., OCC) for grouping ID (i.e., KCs) and OoD (i.e., UCs) samples 

separately in the two disjoint sets. In this study, we use OCSVM as G-SNC, which is one 

     

 

Figure 6.5: An illustration of the detailed architecture diagram of the pixel-

wise CAG-S2CS method for the 𝑖𝑡ℎ test pixel vector 𝐳𝒊. 
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of the popular and widely used novelty detection techniques (Schölkopf et al., 2000; Jun 

and Ghosh, 2013). This popularity is because of its ability to provide sparse solutions, 

robustness against noise, and flexibility to learn a mapping function using samples of a 

single class training data   to characterize non-target class (i.e., UC) and target class (i.e., 

KC). In the training stage of OCSVM, the origin is considered as the only available UC 

and then formulates an optimum hyperplane with maximum margin from the origin. The 

OCSVM as G-SNC, instead of using a single target class to find a single hyperplane, tries 

to find a single global hyperplane by considering all the available information classes as a 

single target class, i.e., as KC.  

    Mathematically, we can represent the training data for G-SNC as  = { 𝐱𝑖 𝑦𝑖
Ω }𝑖  

𝑛  

where 𝑦𝑖
Ω = {    𝑚} ∈ {+ } to be a positive class and origin as a negative class. During 

OCSVM training, the free parameters  f = {ν γ} are given as input to the learning model 

to formulate an optimal hyperplane 𝑓𝑂𝑆 which is defined by the model parameters  m =

{𝐱† 𝛂 𝜌}. The two free parameters are 𝜈 ∈  0  ] representing the upper bound on the 

fraction of outliers in   and γ defining the width of the Gaussian curve of radial basis 

function (RBF) kernel. The three model parameters are 𝐱† representing the K number of 

support vectors, 𝛂 denotes the K size vector of Lagrange multipliers, and 𝜌 is the bias. In 

the classification phase of G-SNC based on OCSVM, the trained 𝑓𝑆𝑁𝐶
𝐺  with  m is used to 

produce the labels {−  + } where +  denotes the KC group and −  means the UC group. 

The expression of RBF kernel based 𝑓𝑆𝑁𝐶
𝐺  for any given test pixel vector 𝐳 is given as 

follows 

𝑓𝑆𝑁𝐶
𝐺  𝐳 𝐱† 𝛂 𝜌 = 𝑠𝑖𝑔𝑛 ((∑𝛼𝑖  exp (−γ‖𝐱𝑖

† − 𝐳‖
2

) 

K

𝑖=1

) − 𝜌)         (6.1) 

6.4.1.2 Stage-II RSC 

The RSC is the second stage in the two-stage CAG-SC2S method, which employs a 

decision rule to perform class predictions. The RSC has two main components, namely 
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decision rule and supervised classifier. As shown in Figure 6.5, RSC has two inputs (i.e., 

𝐳 and the label  𝑓𝑂𝑆 from G-SNC) and one output 𝑓𝑆𝑁𝐶
 . The output 𝑓𝑆𝑁𝐶

 ∈ {0     𝑚} from 

RSC is the final class prediction result of the CAG-SC2S algorithm. For any 𝐳, an RSC 

uses an optimum decision rule-set of the following form. 

         Rule: 

(6.2)          𝐴𝑠𝑠𝑖𝑔𝑛         𝑓𝑆𝐶𝑆
𝐺  𝐳 → 𝑓𝑆 𝐳        𝑖𝑓 𝑓𝑆𝑁𝐶

𝐺  𝐳 𝐱† 𝛂 𝜌 = +  

         𝑂𝑡ℎ𝑒𝑟 𝑖𝑠𝑒  𝑓𝑆𝐶𝑆
𝐺  𝐳 → 0  

    where the label “0” represent outliers or anomaly classes present in test data and 

𝑓𝑆 𝐳   ∈ 𝑦Ω is the discriminant function of a supervised classifier with a set of 𝑛-input 

parameters  = {𝜃     𝜃𝑛}. Contrary to G-SNC, RSC follows a traditional training 

procedure to construct the decision function of a multi-class supervised classifier 𝑓𝑆 using 

the set of 𝑚 KCs in the training set  = { 𝐱𝑖 𝑦𝑖
Ω }𝑖  

𝑛  where 𝑦𝑖
Ω = {𝐶     𝐶𝑚}. In this 

chapter, we use a multiclass support vector machine (MSVM) (Cortes and Vapnik, 1995; 

Ghamisi et al., 2017) and a deep convolutional neural network (DCNN) (Hu et al., 2015) 

as the supervised classifiers in Stage-II. 

6.4.2 Proposed CAL-SC2S 

The proposed CAL-SC2S algorithm follows the technical line of CAG-SC2S to explore and 

enhance the classification performance in any given application environment. As shown in 

Figure 6.6, CAL-SC2S is also a two-stage interconnected system similar to the CAG-SC2S. 

     

 

Figure 6.6: Detailed architecture diagram of the pixel-wise CAL-S2CS 

method for the 𝑖𝑡ℎ test pixel vector 𝐳𝒊. 

Block diagram: Version 2.1 : 09/07/2020 
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The two cascaded decision stages in CAL-SC2S are local SNC (L-SNC) as the first stage 

and RSC as the second stage. The main difference between the CAG-SC2S and CAL-SC2S 

algorithms is the usage of novelty detection schemes in Stage-I. The G-SNC in CAG-SC2S 

performs refinement from the global view, whereas the L-SNC in CAL-SC2S performs 

from the local view (Homenda and Jastrzebska, 2015; Dubacharla and Nidamanuri, 2021) 

(see Figure 6.2). A detailed description of the L-SNC and RSC to implement the cascade 

classification follows.   

6.4.2.1 Stage-I: L-SNC 

Unlike CAG-SC2S, the first stage of CAL-SC2S uses L-SNC that performs class-specific 

model learning to build multiple local boundaries instead of building a single global 

boundary for mapping ID and OoD samples (see Figures 6.2 and 6.6). For a 𝑚-KC 

classification problem, the L-SNC based on OCC is trained on a dataset from 𝑚 KCs by 

independently computing 𝑚 discriminant functions where each discriminant function is 

built using one KC subset of the 𝑚-KC training data. During the training phase of L-SNC, 

we initially partition the training set   having 𝑚-KCs into 𝑚 training data subsets  𝑚 and 

then construct 𝑗𝑡ℎ decision function using a subset  𝑗 where 𝑗 =     𝑚. In the 

classification phase, 𝑚 OCC classifiers’ outputs 𝑚 individual decision values for a given 

test sample. Then it uses a combination strategy to merge these 𝑚 intermediate decision 

labels to produce a final label. Let 𝑓𝑂𝑆

𝑗 ∈ {−  + }  be the 𝑗𝑡ℎ decision function of OCSVM 

with RBF kernel and 𝑓𝑆𝑁𝐶
𝐿 ∈ {−  + } be the decision function of L-SNC. For a given 𝐳, 

the mathematical expressions of 𝑓𝑂𝑆

𝑗
 and 𝑓𝑆𝑁𝐶

𝐿  are given as follows 

𝑓𝑂𝑆

𝑗 (𝐳  m
𝑗
) = 𝑠𝑖𝑔𝑛 ({∑𝛼𝑖

𝑗
exp (−γ𝑗‖𝐱𝑖

𝑗†
− 𝐳‖

2

) 

K

𝑖=1

} − 𝜌𝑗)  ∀ 𝑗 =     𝑚 (6.3) 

𝑓𝑆𝑁𝐶
𝐿  𝐳  m = 𝐼 ({∑𝑓𝑂𝑆

𝑗 (𝐳  m
𝑗
)

𝑚

𝑗=1

} + 𝑚 > 0)  (6.4) 
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𝐼 𝐴  is assigned to {
           𝑖𝑓  𝐴 𝑖𝑠 𝑡𝑟𝑢𝑒
 −           𝑜𝑡ℎ𝑒𝑟 𝑖𝑠𝑒 

 (6.5) 

where  m
𝑗

 represent the 𝑗𝑡ℎ OCSVM model parameter set,  m represent the L-SNC model 

parameters, and 𝐼    represents the function that combines the intermediate decision 

values. 

6.4.2.2 Stage-II: RSC 

The RSC is the second stage of CAL-SC2S which operates the same as the RSC of CAG-

SC2S. The RSC of CAL-SC2S employs a decision rule whose output depends on two inputs 

and the decision function 𝑓𝑆 of a supervised classifier. The two inputs of RSC are 𝐳 and 

𝑓𝑆𝑁𝐶
𝐿 ∈ {−  + }. The output of RSC 𝑓𝑆𝐶𝑆

𝐿 ∈ {0     𝑚}  produces the final class label of 

CAL-SC2S 𝑓𝑆𝑁𝐶
𝐿 . The decision rule-set used by RSC of CAL-SC2S is of the following form. 

         Rule: 

(6.6)         𝐴𝑠𝑠𝑖𝑔𝑛           𝑓𝑆𝐶𝑆
𝐿  𝐳 → 𝑓𝑆 𝐳        𝑖𝑓 𝑓𝑆𝑁𝐶

𝐿  𝐳  m = +  

        𝑂𝑡ℎ𝑒𝑟 𝑖𝑠𝑒    𝑓𝑆𝐶𝑆
𝐿  𝐳 → 0   

6.4.3 Model architectures of CA-SC2S 

For real-world applications, accuracy and computation time are two crucial parameters that 

determine the efficacy of the classification algorithm. Over the years, realizing image 

classification algorithms capable of producing stable accuracy and performing real-time 

computation has been one of the vibrant areas of research across various disciplines 

(Dubacharla and Nidamanuri, 2020). The proposed CAG-SC2S and CAL-SC2S algorithms 

provide stable classification accuracy performance in both CSR and OSR application 

environments. An efficient classification model architecture of the proposed CA-SC2S 

algorithms would address the real-time application requirements. Since it is impossible to 

develop an instantaneous processing system, near real-time or real-time processing systems 

which satisfy the timing constraints are typically a proposed option in many practical 

applications. In this context, we propose an efficient modification to the existing 
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two-stage cascade model architecture of the CA-SC2S algorithm. For naming convention, 

we refer to the current model architecture as Type-I (see Figure 6.7(a)) and the new 

proposed model architecture as Type-II (see Figure 6.7(b)). As shown in Figure 6.7(a), 

Type-I architecture has two modules, namely SNC (Stage-I) and RSC (Stage-II). The RSC 

has two submodules, namely decision region (DR) and supervised classifier (SC). There 

are three modules in Type-II architecture, namely, SNC, SC, and rule-based decision fusion 

(RDF). Each of the three modules focuses on performing different objectives. The RDF 

uses a rule-set that is similar to the rule-set used in RSC and is shown below. 

 

   

        
                                             (a)                                                                        (b)                                                  (c) 

 

        
                         (d)                                                                       (e)                                                                 (f) 

 

      
                                            (g)                                                                                                                   (h)                                      

Figure 6.7: Hardware architectures of the pixel-wise classification models of 

the CA-SC2S methods for the 𝑖𝑡ℎ test pixel vector 𝐳𝒊. (a) Type-I 

CA-SC2S model architecture, (b) Type-II CA-SC2S model 

architecture. (c) DR module architecture. (d) The architecture of 

the PE module. (e) Stage-I G-SNC module architecture. (f) The 

architecture of the RDF module. (g) Stage-I L-SNC module 

architecture, and (h) SVM-based Stage-II SC module architecture. 
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         Rule: 

(6.7)         𝐴𝑠𝑠𝑖𝑔𝑛           𝑓SCS
†  𝐳 → 𝑓𝑆 𝐳        𝑖𝑓 𝑓𝑆𝑁𝐶

†  𝐳  m = +  

        𝑂𝑡ℎ𝑒𝑟 𝑖𝑠𝑒    𝑓SCS
†  𝐳 → 0    

    Unlike Type-I, which uses sequential stages, Type-II architecture uses parallel stages to 

perform intermediate class predictions using SNC and SC simultaneously. As a result, 

Type-II architecture can perform computation much more quickly than Type-I. Then, we 

have four different variants of the CA-SC2S algorithm, namely, CAG-SC2S Type-I (CAG-

SC2S-I), CAL-SC2S Type-I (CAL-SC2S-I), CAG-SC2S Type-II (CAG-SC2S-II), and CAL-

SC2S Type-II (CAG-SC2S-II). In this chapter, we proposed three efficient classification 

models in terms of accuracy and computation time. Nevertheless, Type-I and Type-II 

architectures result in the same classification accuracy performance. Moreover, we also 

assess and demonstrate the real-time classification performance of the above-mentioned 

four model architectures of CA-SC2S by designing the FPGA-based hardware architecture 

of each model. The accuracy and real-time computation performance of the four FPGA 

architectures of CA-SC2S using SVM as SC is compared against the FPGA design of multi-

class pairwise SVM. We use XSG, which is an architectural-level design tool, in a 

MATLAB-Simulink environment to design and evaluate the real-time performance of the 

five FPGA architectures (Xilinx User Guide, 2016). The training phase of the five models 

is performed offline since the training includes searching an optimum parameter that 

induces uncertain computational overheads depending on the training set used.  

    The model parameters obtained from offline computer training are used to design the 

FPGA architecture of the corresponding decision function and perform FPGA-based online 

classification. All the five FPGA models use SVs and processing elements (PEs) to perform 

class prediction for any 𝐳. Figure 6.7(d) shows the FPGA architecture of a PE using 𝑖𝑡ℎ SV 

and 𝐳 whose mathematical expression is given in Equation (6.8). Figure 6.7(h) shows the 

FPGA architecture of the MSVM method with RBF kernel having P binary classifiers 

(BCs) and P biases. The 𝑖𝑡ℎ BC, 𝑓BC
𝑖 , has 𝐾𝑖 SVs and PEs. The CAG-SC2S-I FPGA 

architecture has three main modules such as G-SNC, DR, and SC. The hardware 

architectures of G-SNC, DR, and SC are shown in Figures 6.7(e), 6.7(c), and 6.7(h), 
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respectively. The CAG-SC2S-II architecture also has three main modules: G-SNC, rule-

based decision fusion (RDF), and SC. The hardware architectures of G-SNC, RDF, and SC 

are shown in Figures 6.7(e), 6.7(f), 6.7(h), respectively. The CAL-SC2S-I has three main 

modules such as L-SNC, DR, and SC. The hardware architectures of L-SNC, DR, and SC 

are shown in Figures 6.7(g), 6.7(c), and 6.7(h), respectively. The CAL-SC2S-II model 

architecture also has three main modules such as L-SNC, RDF, and SC. The hardware 

architectures of L-SNC, RDF, and SC are shown in Figures 6.7(g), 6.7(f), and 6.7(h), 

respectively. The architectures of DR and RDF are designed using registers with enable 

and synchronous reset inputs. To shorten the critical path in the FPGA design, we add 

overhead registers based on timing closure. 

𝑓  = 𝛼𝑖 exp (−γ‖𝐱𝑖
† − 𝐳‖

2

)   (6.8) 

6.5 Design of Experimental Setup of Various CSR and OSR 

Scenarios 

In this chapter, we propose to use a comprehensive evaluation scheme to certify the 

efficacy of any given algorithm in terms of classification accuracy and real-time 

computation. The scheme uses an experimental setup that is focused on simulating two 

realistic classification scenarios of application environments, i.e., CSR and OSR. The 

proposed setup consists of five different case studies of various classification scenarios 

designed from multi-sensor and multi-platform MSIs and HSIs. The first four case studies 

are used to examine the classification accuracy performance, and the fifth case study is 

used to examine the real-time computation performance. Each type of case study helps us 

to validate the efficiency of a classification algorithm. Further, each of the first four case 

studies contains six test cases where each test case is prepared from each imagery. Each 

test case has two mutually exclusive sets, namely, KC set of size 𝑚 and UC set of size  𝑐 −

𝑚 . The model training is performed using the samples belonging to the KC set, and then 

we perform class prediction on the dataset that includes the samples from the KC set and 



 

118 

 

UC set. A detailed description of the use of five case studies to validate the performance 

of a classifier is given as follows. 

1. The first case study is to evaluate the performance of a classifier for a CSR 

setting where the information classes are the same during training and testing. 

All the available ground truth reference classes are considered KCs (i.e., 𝑚 =

𝑐), and the UC set has no classes. 

2. The second case study is used to evaluate the classifier’s performance for the 

OSR setting. In this case study, for each one of the six test cases, we consider 

at least one information class to be in the KC set (i.e., 𝑚 >   and 𝑚 < 𝑐) and 

the remaining  𝑐 − 𝑚  classes as UC set. 

3. The third case study also mimics the OSR setting to validate the performance 

of a classification algorithm. In each of the six test cases of this case study, we 

preset the size or number of classes in the KC set and make a random selection 

of the type of information classes (i.e., 𝑚 out of 𝑐) in the KC set. The remaining 

 𝑐 − 𝑚  classes are considered in the UC set. 

4. The fourth case study also contains six different test cases of the OSR setting. 

In this case study, the size and type of information classes in the KC set and UC 

set are chosen randomly. 

5. In the fifth case study, we select one OSR scenario and evaluate the real-time 

classification performance of the proposed four FPGA-based hardware designs 

of the considered algorithms against the classifier without a reject option. 

    In each of the above-mentioned first four case studies, we repeat each of the six test-case 

experiments for ten random realizations or trials. As a final result of each test case, we 

report the mean and SD of the performance metrics across ten trails. For the fifth case 

study, we report the results that include classification accuracies and hardware design 

metrics. Hence, there are a total of 241 different experiments of classification scenarios 

from five various case studies. 
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6.6 Results and Analysis 

This section presents the obtained experimental results and performs the comparative 

performance analysis of our two-fold objectives. The first objective aims at conducting the 

first four experimental case studies to obtain the classification results for assessing the 

accuracy performance of the classifiers. At the same time, the second objective is to 

conduct the fifth experimental case study and obtain the corresponding results to assess the 

FPGA design performance of the algorithms for a given real-time constraint. In this 

chapter, we assess the performance of seven different classification algorithms. The seven 

algorithms can be divided into two disjoint categories: algorithms without-reject option 

and algorithms with-reject option. In the category of without-reject option, we choose SVM 

and DCNN methods. In the category of with-reject option, we choose OSNNNNDR, CAG-

SC2S (OCSVM+SVM), CAL-SC2S (OCSVM+SVM), CAG-SC2S (OCSVM+DCNN), and 

CAL-SC2S (OCSVM+DCNN). The class prediction performance is assessed using various 

objective metrics, such as mean (SD) of classification accuracies [i.e., OA and AA], mean 

FNR, and FPR, derived from the error matrix. 

    The six considered datasets that are used in the experiments are preprocessed using min-

max normalization over the interval [0,1]. We have performed training and classification 

of all the considered classifiers in the python programming language. The FPGA 

architecture design and implementation are done using XSG in the MATLAB-Simulink 

environment. The power usage results are obtained using the Xilinx Vivado tool (Xilinx 

User Guide, 2016). During the training phase, ten percent of the whole available reference 

data has been randomly selected for learning the seven classification models. In terms of 

the OCSVM and SVM, the RBF kernel is considered. The hyperplane parameters  =

{𝐶 𝛾 𝜈} have been searched in the ranges of 𝐶 = {0 00    960 00 } with a step size of 

40, 𝛾 = {0 00    00     4 00 } and 𝜈 = {0 00  0 0    0  65}. The open-set 

classifier OSNNNNDR is modeled, and a detailed explanation of the same is provided in 

Chapter 2. In our DCNN architecture, we have the input layer (L1), convolution layer (L2), 

max-pooling layer (L3), fully connected layer (L4), and output layer (L5). The layers L2 

and L3 jointly act as the feature extraction layer. Whereas layer L4 functions as the 
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classification layer. The L1 parameter is set to be 𝑛 =   and 𝑛  is the size of the input 

layer. In the first hidden layer, L2, there are five kernels of size 3 ×   and contain 20 nodes. 

In the second hidden layer, L3, the stride width is set to 2, and there are no trainable 

parameters in this layer. The third hidden layer, L4, has 20 nodes, and the output layer L5 

has 𝑚 nodes. In addition, the DCCN architecture is trained over 1500 epochs with a 

learning rate of 0.01, validation split of 0.1, and batch size of 600.  

    To implement SVM and OCSVM algorithms, we used LIBSVM from the scikit-learn 

library (Chang and Lin, 2011), whereas DCNN is implemented using the torch library. The 

selection of model parameters of OCSVM, SVM, and OSNNNNDR threshold 𝜏 =

{0 0 0    0 98} are tuned during the training stage using grid search over ten-fold cross-

validation. Tables 6.1, 6.2, 6.3, and 6.4 summarizes the class prediction results of four 

classification case studies by seven different classifiers in terms of mean (SD) of OA and 

AA. In addition, Figures 6.8 and 6.9 show the mean error rates (FNR and FPR) of the four 

case studies and detailed classification maps of particular test case scenarios, respectively. 

Table 6.5 displays the FPGA-based hardware design results to demonstrate the real-time 

performance of the proposed algorithms and architectures. A detailed analysis of each of 

the seven classifiers across different case studies of CSR and OSR scenarios is provided as 

follows. 

6.6.1 Performance evaluation of the list of classifiers using case study I 

Table 6.1 shows the list of seven classifiers and their classification accuracy performance 

results averaged over ten trails corresponding to each test case scenario of CSR setting. In 

this CSR case study, we analyze whether the established classifiers and proposed classifiers 

are sensitive to the changes in the training set used. From the comparison of the OAs and 

AAs in Table 6.1, it can be inferred that, despite slight differences, all the seven 

classification techniques yielded better classification performance across all cases of MSIs 

and HSIs. These results indicate that the CA-SC2S classification method pairs and 

OSNNNNDR have produced nearly as good accuracies as SVM and DCNN. However, SVM 

and DCNN have resulted in better mean OAs and AAs with relatively low SD than the 
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variants of CA-SC2S methods. As shown in Table 6.1, the highest mean OA of 100% and 

AA of 100% with SD of 0% was produced by SVM for test case 2 of R18 MSI dataset. 

And the CAG-SC2S with DCNN has the lowest mean OA of 88.41% and AA of 88.33%, 

with SD of at least 17% for test case 1 using the WV3 MSI dataset. Although we have 

performed rigorous DCNN training, the relatively low performance of CAG-SC2S using 

DCNN as a supervised classifier is may be due to the chosen architecture or parameters. 

Among the four variants of CA-SC2S, CAG-SC2S and CAL-SC2S using SVM have 

performed better than DCNN. Further, there is a less significant difference in the 

classification accuracies between CAG-SC2S and CAL-SC2S using SVM. 

    Moreover, to assess the errors produced by the seven multiclass classifiers, we have also 

estimated the mean percentages of FNR and FPR over the ten realizations of each test case. 

The estimated mean percentages of FNR and FPR of all the classifiers for each test case 

are shown visually in Figures 6.8(a) and 6.8(b), respectively. The lowest mean FNR and 

FPR of 0% is obtained by SVM for test case 2. And the highest mean FNR of at least 

30.77% and FPR of at least 0.67% are obtained for CA-SC2S variants using DCNN for test 

cases 1 and 5. The obtained results from Table 6.1, Figures 6.8(a), and 6.8(b) indicates that 

the performance of classifiers without reject-option (SVM and DCNN) is marginally high 

than the classifiers with reject-option. This is particularly due to the less sensitivity of 

classifiers without reject-option to the training set used for model learning than the 

classifiers with reject-option. These observations indicate that the suitability of the CA-

SC2S variants with the representative training set, especially the CAL-SC2S variants, for 

LULC classification for the CSR environment setting.  

6.6.2 Performance evaluation of the list of classifiers using case study II 

Table 6.2 shows the classification accuracies obtained by the seven classification 

techniques for the case study II of OSR setting with more than one UC. Unlike case study 

I, SVM and DCNN have produced very low classification accuracy results when compared 

to OSNNNNDR and four variants of CA-SC2S. From Table 6.2, a statistically significant 

difference between classifiers without reject-option and with reject-option in terms of 
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accuracies can be observed. This accuracy difference is of a large margin, of about 9% to 

67% for OA and 1% to 32% for AA, for all the test cases except for test case 4. For test 

case 4, there is a small margin of difference of about 2% to 5% for OA and 0.09% to 0.17% 

for AA. As shown in Table 6.2, the highest mean OA of 98.27% and AA of 98.07% with 

an SD of 2.13% was produced by CAL-SC2S using SVM and CAL-SC2S using DCNN for 

test case 6 of TI HSI dataset. And DCNN has produced the lowest mean OA of 28.21% for 

test case 5 and AA of 66.67% for test cases 2 and 6. There is no significant difference 

between SVM and DCNN in terms of OAs and AAs. The poor classification performance 

by SVM and DCNN can be inferred as the existence of forced assignment problems for 

UCs. It can be observed from Table 6.2 that the OSNNNNDR has yielded better results than 

SVM and DCNN but less than the four variants of CA-SC2S. However, in some cases, 

OSNNNNDR offered better classification accuracy than CAG-SC2S but less than CAL-SC2S. 

    Among the four variants of CA-SC2S, CAL-SC2S using SVM resulted in significantly 

better classification accuracy for all the test cases. In fact, a good improvement has been 

observed with CAL-SC2S compared to CAG-SC2S. For example, for the TI HSI dataset 

49.24%, and 98.27% of OA are observed respectively for the CAG-SC2S using SVM and 

CAL-SC2S using SVM; and 69.56% and 89.97% AA observed for WV3 image. A similar 

trend in OA and AA can be observed for the remaining images or test cases. However, the 

validity of this observation depends upon the test cases and the training set used for 

learning. There is a less significant difference in the classification accuracies between 

CAL-SC2S using DCNN and CAL-SC2S using SVM in few cases. 

    Further, examining the better-performing classifier relative to each test case in the OSR 

environment can be done using FNR and FPR. In this regard, we illustrate the obtained 

mean percentages of FNR and FPR using a 3D bar chart plot for the classifiers relative to 

each test case in Figures 6.8(c) and 6.8(d). A low FNR and low FPR indicate a good class 

prediction with minimum errors. When compared with the FNR and FPR results, it can be 

observed that SVM and DCNN produced more errors (i.e., high FNR and FPR) with low 

SD for all the cases. These results confirm the confident errors often made by the classifiers 

without reject-option. This is an important observation because a classifier with an 
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inclusion of the reject-option is particularly advantageous when dealing with unknown 

samples or UCs to reduce false predictions. 

6.6.3 Performance evaluation of the list of classifiers using case study III 

The OA and AA estimation results obtained from different sets of classifiers for all the six 

test case scenarios in case study III are shown in Table 6.3. This case study was explicitly 

designed to evaluate the dependency and sensitivity of the classification performance on 

the number of KCs or UCs. As can be seen from the table, we can derive some interesting 

inferences. It can be seen, in all experimental test cases, the difference in mean percentages 

of OA and AA results between the classifiers without and with reject-option is significantly 

large. For instance, a minimum of 2% and a maximum of 58% OA difference are observed 

respectively for the classifiers without and with reject-option; and 4% and 39% AA 

difference. As shown in Table 6.3, the highest mean OA of 98.92% with SD of 0.34% and 

AA of 98.73% with SD of 0.43% was produced by CAL-SC2S using SVM for test case 6 

of the TI HSI dataset. And DCNN has made the worst mean OA of 33.06% and AA of 

33.04% for the test cases 2. Despite the observation that both SVM and DCNN present 

nearly similar results, it is noteworthy that the SVM is able to reach a slightly better 

performance. The OSNNNNDR method presents better results than SVM and DCNN but less 

than the four variants of CA-SC2S. Nevertheless, in test cases 1 and 4, OSNNNNDR obtained 

better classification accuracy than CAG-SC2S but less than CAL-SC2S. 

    When compared with AA results obtained from SVM and DCNN for all the test cases, 

it can be observed that UCs are completely misclassified into one of the KCs. For example, 

for the first test case, there are three KCs and five UCs. Then we consider the five UCs as 

one category for performing the classification and accuracy evaluation. Now, there are a 

total of four classes (i.e., three KCs and one UC), and their AA is about 79.59% for SVM, 

which confirms that the remaining 20% error is due to the UC category. A similar trend 

can be observed for the remaining test cases and also in the four case studies. This critical 

observation cannot be inferred by OA results alone because of the presence of unbalanced 

datasets. In the case of classifiers with rejection, the OSNNNNDR and the four derivative 
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techniques of CA-SC2S offered better class predictions by rejecting to classify the UCs as 

one of the KCs. Figures 6.8(e) and 6.8(f) show the mean percentages of FNR and FPR by 

the classifier for the test cases. The best FNR and FPR scores are obtained for test case 6 

by CAL-SC2S using the SVM method. CAL-SC2S using SVM presents relatively better 

OAs, AAs, FNR, and FPR results for all the images among the seven classifiers. 

6.6.4 Performance evaluation of the list of classifiers using case study IV 

From the results detailed in Table 6.4, it can be observed that the proposed CA-SC2S 

methods exhibit superior performance in terms of OA and AA. Similar to the previous two 

case studies, there is a significant difference of at least a 10% change in classification 

accuracies between the classifiers without rejection and with rejection. The SVM and 

DCNN offered the lowest mean percentages of OAs and AAs among the seven classifiers 

across all the test cases. For example, SVM presented a minimum and maximum mean OA 

of 25.86% for CHK image and 63.72% for TI image, respectively. In the case of DCNN, 

no significant improvement is observed across the six images. The classification results 

obtained by the classifiers with reject-option point out substantial differences in the 

magnitude of OA and AA increase. The observed significant increase in the classification 

accuracies of the classifiers with reject-option supports the theoretical advantage of using 

reject-option and an extra-label. The OSNNNNDR performed fairly well across the six cases 

and presented higher accuracies than CAG-SC2S methods for test case 6. Unlike the CAG-

SC2S, the performance of OSNNNNDR is susceptible to the training data and may result in 

errors in the presence of noise.  

    When the accuracy results of classifiers with reject-option are compared, it can be seen 

that CAL-SC2S using the SVM method offered stability in classification performance. As 

shown in Table 6.4, the highest mean percentages of OA 98.50% and AA 98.51% are 

obtained by CAL-SC2S using SVM for the TI HSI image. The lowest mean percentages 

among the classifiers with reject-option are obtained for the CHK image with the 

OSNNNNDR method 34.30% of OA and with CAG-SC2S using the DCNN method 56% of 

OA AA. Figures 6.8(g) and 6.8(h) show that the mean percentages of FNR and FPR results 
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Figure 6.8: 3D bar plot visualization of the obtained mean percentages of FNR 

[(a), (c), (e), and (g)] and FPR [(b), (d), (f), and (h)] results by seven 

classifiers for six different test cases in four case studies. The 

increasing order of case studies from top to bottom. The legend for 

the list of classifiers and test cases is also shown above. 

Classifi
ers

A B C D E F G

A B C D E F G

SVM DCNN OSNNNNDR CAG-SC2S
(OCSVM+SVM)

CAL-SC2S
(OCSVM+SVM)

CAG-SC2S
(OCSVM+DCNN)
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Figure 6.9: Classified images produced by the list of classifiers for the specific 

realization of WV3 dataset. The maps (a) and (b) are produced by 

SVM. (c) and (d) are produced by OSNNNNDR. (e) and (f) are 

produced by CAG-SC2S using SVM as SC. (g) and (h) are 

produced by CAL-SC2S using SVM as SC. The class predictions 

by algorithms are performed only on the ground truth reference 

data to show the errors produced by the classifiers for the UCs. 
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are illustrated using 3D bar plots. The SVM and DCCN methods presented the worst FNR 

of 57.23% to 92.97% and FPR 20.60% to 58.71% values for all the images. In comparison, 

the CAL-SC2S using SVM offered relatively better FNR of 4.54% to 56.55% and FPR of 

0.52% to 7.73% values across all the datasets. From Table 6.4, Figures 6.8 (g), and 6.8(h), 

we can confirm that the CAL-SC2S using the SVM method presented superior performance 

among the considered algorithms. 

    Figure 6.9 visually highlights the better insights to the errors produced by the classifiers. 

In this illustration, the training set included 687 pixel vectors of 2 KCs (i.e., pool water and 

river water), whereas the testing set included 21197 (6870 of KCs and 14327 of UCs) 

samples of all possible class examples (i.e., 8). The (OA, AA, FPR, FNR) % results of 

SVM, OSNNNNDR, CAG-SC2S, and CAL-SC2S are (32.41, 66.67, 80.67, 51.05), (80.89, 

90.58, 32.07, 10.56), (87.51, 93.72, 22.28, 6.69), and (94.65, 97.12, 10.16, 2.75), 

respectively. Overall, the classification maps in Figure 6.9 shows that CAL-SC2S with 

SVM as SC achieved superior classification performance. In the above discussed four case 

studies, the instability or fluctuations in SD percentage values for both OA and AA across 

all the test cases is due to the following reasons. First, due to the random selection of the 

training samples, the model training is subjective to the quality of the training set used. 

Second, the accuracy performance also depends on the KCs, UCs, and their intraclass and 

interclass relations with each other.  

6.6.5 FPGA-based hardware design performance evaluation of the list of 

classifiers using case study V 

The computation time is one of the most important indicators along with classification 

accuracy which determines the efficacy of the algorithm. For this reason, the computational 

advantage of the proposed approach is obtained by restructuring the architecture of the 

classification model of CA-SC2S-I to CA-SC2S-II. The computational speed of Type-II 

models of CA-SC2S can be increased by making use of a parallel computing strategy. In 

this case study, we assess both the classification accuracy and computation time of the 

classification algorithms for the specific realization of the test case of ANG image. The test 



 

130 

 

case scenario consists of two KCs   namely, river water and lake water. And the remaining 

four classes are considered as UCs. The   five classifiers considered in this case study are 

SVM, CAG-SC2S-I, CAL-SC2S-I, CAG-SC2S-II, and CAL-SC2S-II. As shown in Table 

6.5, evaluation is performed using metrics like the number of SVs, classification 

accuracies, resource usage, latency, throughput, computation time, and power usage. As 

can be seen in Table 6.5 (Top), the number of support vectors is more for CAL-SC2S 

methods, and the least is for the SVM method. The CAL-SC2S methods are two-stage 

systems consisting of L-OCSVM (with two OCSVM models) and SVM as subsystems. By 

analyzing the accuracy and error values, there are statistically significant differences 

between the SVM and four variants of CA-SC2S using SVM. It should be noted that the 

two models CAL-SC2S-I and CAL-SC2S-II, provide the same classification results as both 

consist of identical subsystems with different connections. Similarly, CAG-SC2S-I and 

CAG-SC2S-II also present the same results.  However, CAL-SC2S models achieved the 

highest classification accuracies with the least error rates. 

    As can be seen in Table 6.5 (Bottom), FPGA-based results obtained by the list of 

classifiers are presented. For the ANG HSI dataset, the real-time constraint of 15.6 𝜇𝑠 is 

defined by the sensor scanning time for the per-pixel vector. To achieve real-time or near 

real-time processing of one pixel vector, the processing system must classify the pixel 

vector within 15.6 𝜇𝑠 (Basterretxea et al., 2016; Dubacharla and Nidamanuri, 2020). In 

FPGA-based classification systems, the processing time mainly depends on the 𝐹𝑚𝑎𝑥 (in 

MHz) and the clock cycles or latency(Xilinx User Guide, 2016; Zhang, 2017). As expected, 

the CAG-SC2S-I and CAL-SC2S-I methods reported large clock cycle values, i.e., double 

the dimensionality of the data. Whereas the SVM, CAG-SC2S-II, and CAL-SC2S-II used 

 +  0 clock cycles to classify one pixel vector. It should be noted that the delay or latency 

is added only at the beginning of the computation, and in the later processing stages, there 

is no latency in processing the inputs. The main reason for this is due to pipelining feature 

in the proposed designs. As can be observed from Table 6.5, all the five FPGA designs of 

the classifiers have obtained a 𝐹𝑚𝑎𝑥 of at least 65 MHz with a minimum hardware resource 

usage. The FPGA processing times of the five classifiers indicate that the FPGA designs 

have achieved the real-time processing of per-pixel vector classification by satisfying the 
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timing constraint. As observed from the table, the Type-II models have exhibited an 

improvement in processing time compared to the Type-I models. Likewise, the low-latency 

values of the FPGA designs have achieved high throughput rates, leading to fast 

computation. Further, the power usage estimates of the five FPGA design reported in the 

table indicate the low power usage of the classifiers with less significant differences. 

Overall, the Type-II models of CAG-SC2S and CAL-SC2S have achieved the highest 

accuracy results along with the fast computation time by taking advantage of pipeline 

parallelism.  

6.7 Chapter Conclusions 

This chapter assessed the accuracy and real-time computation performance of the proposed 

CAL-SC2S algorithms using MSIs and HSIs. The comprehensive experimental evaluation 

using five different case studies containing 241 test case classification scenarios is 

Table 6.5: Assessment of the classification accuracies (Top), errors (Top), and 

real-time processing (Bottom) results using FPGA obtained by the 

list of five classification techniques for the specific realization of 

ANG HSI dataset. The results are estimated for the considered 

realization of ANG image with river water and lake water as two 

KCs in case study V. 

Techniques 
No. of 

SVs 

Accuracy [%] Error [%] 

OA AA FNR FPR 

SVM 2 20.71 66.66  66.12 100  

CAG-SC2S-I 4 98.30 98.55 1.79 1.60 

CAL-SC2S-I 6 99.69 99.03 1.70 1.47 

CAG-SC2S-II 4 98.30 98.55 1.79 1.60 

CAL-SC2S-II 6 99.69 99.03 1.70 1.47 

 

Techniques 
No. 

of 

SVs 

Resource 

usage 

[%] 

𝑭𝒎𝒂𝒙 

(MHz) 

Per pixel vector 

Throughput 
(Pixel vectors/𝒔) 

FPGA 

computation time 

(in 𝒔) 

On-

chip 

power 

(W) 

Latency 

Real-time 

constraint 
Clock 

cycles 

FPGA 

processing 

time 

Only KC 

samples 
Full 

image 

SVM 2 18.73 72.40 

15.6 𝜇𝑠 

371 5.12 𝜇𝑠 1,953,125 0.0269 2.16 0.224 

CAG-SC2S-I 4 35.37 69.90 740 10.59 𝜇𝑠 944,287 0.055 4.48 0.308 

CAL-SC2S-I 6 51.69 65.60 741 11.29 𝜇𝑠 885,739 0.059 4.78 0.351 

CAG-SC2S-II 4 33.31 70.40 371 5.27 𝜇𝑠 1,897,533 0.0277 2.23 0.312 

CAL-SC2S-II 6 43.32 65.20 372 5.70 𝜇𝑠 1,754,385 0.0299 2.41 0.358 
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presented. The experimental analyses state that the choice of including reject-option in the 

classification tasks can significantly increase the reliability of the class predictions in real-

world dynamic environments. The classification accuracy results of the proposed CAL-

SC2S algorithm with real-time processing capabilities using FPGA demonstrate the 

efficiency of the proposed approach.  
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CHAPTER 7 

DISCUSSIONS AND MAJOR CONTRIBUTIONS 

Prelude: In this chapter, a comprehensive discussion on the overall observations of the 

studies presented in the previous chapters of this thesis is briefly described. Further, a 

detailed summary of the important contributions of this thesis to the state-of-the-art remote 

sensing image analysis is also presented in this chapter. 

7.1 Discussions 

This thesis has developed and implemented novel algorithmic schemes to make robust and 

efficient class predictions in real-world, real-time environments using MSIs/HSIs. The 

improvements to the existing methods have been proposed in two different areas of image 

classification, namely, accuracy and computation time. Many studies have been conducted 

on the importance of classification accuracies for MSIs/HSIs, but only a few studies were 

conducted about other critical issues, such as the simplicity and speed of the approaches. 

However, several novel classification techniques proposed in the literature are typically 

aimed at improving the accuracy and processing time in the closed-set environment. They 

do not account for the dynamic, open-set environments. In fact, multiple studies have 

demonstrated the potential use of MSI/HSI classification applications across a diverse 

range of scientific and engineering domains. To be deployed in real-world application 

environments, the classifiers must produce reliable predictions regardless of the 

environments or inputs; otherwise, they may end up with suboptimal performance. 

    Regarding the computation time requirements, the FPGA-based MSVM designs 

proposed in Chapter 3 offers image classification to be performed in real-time constraints 

with minimum latency. The Arty-35T based designs showed a speedup of 38.7 times the 

software version for the Pavia University dataset. And for the new generation, AVIRIS-

NG HSI sensor, a speedup of 14.2 times the software-based execution is achieved. The 
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hardware designs were developed using a low-complexity, architectural-level tool. One of 

the advantages of the proposed hardware-based MSVM designs is that the computation 

time is independent of the number of support vectors. However, the MSVM classification 

algorithm has presented good accuracies for the KCs, but simultaneously, it produced 

unnoticed omission errors for the unseen classes. These erroneous class predictions for 

UCs can be seen in the classified images shown in Figure 3.7. It is understood that the 

forced assignment problem produces errors for UC samples. In the past several researchers 

have proposed techniques to address the forced assignment problem of classifiers for UCs. 

Still, these methods are complex to operate, and also few of them are sensitive to initial 

settings. The proposed SC2S method provides a simple scheme yet practical approach to 

handle the UCs. The two-stage SC2S algorithm presents an improvement over SVM 

concerning OA in the range of 1% to 74% and errors rate in the range of 3% to 74% (see 

Table 4.2). In the case of open-set scenarios, SC2S offers superior classification 

performance over SVM while maintaining fairly equal performance for closed-set 

scenarios. 

    Some of the advantages of using the SC2S algorithm are as follows. First, the SC2S 

method can perform reliable predictions for both MSIs and HSIs. Second, the SC2S 

algorithm is simple to use and modify accordingly to application or user requirements. 

Third, classification errors can be traced easily due to the two-stage architecture. We 

explored the potential of SC2S by testing the prediction performance using several test case 

scenarios. Although the SC2S method obtained better classification results than RF, SVM, 

OSNNCV, OSNNNNDR, and P-SVM, there are a few shortcomings or limitations (see Figure 

4.5). One of the limitations of SC2S is that it fails to find the similarity between the IL-KC 

sample and the IS-KC sample. Whereas the proposed SI2CS and SMMs in Chapter 5 

overcome the limitation of not grouping the IS and high IL sample as one categorical class. 

As shown in Table 5.1, there is a good improvement of accuracies by SI2CS in the range 

of 4% to 40% over the traditional OCC methods. Further, the shadow detection rate of 

SI2CS and SMMs is increased by 20% to 90%. However, there are still a few influential 

factors limiting the accuracy of the proposed algorithms, as discussed in Section 5.5.4. 
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    Another shortcoming of the SC2S or CAG-SC2S method is that there are still a few 

forced assignment errors for UCs. The reason for these errors is due to the usage of a global-

level novelty detection scheme in SNC. In other words, a single global decision boundary 

is used to find the novelty samples. This novelty detection scheme is insensitive to UCs 

present in between the KCs. This shortcoming is overcome by the proposed CAL-SC2S 

method that considers 𝑚 decision boundaries for 𝑚 KCs instead of using only one 

boundary. There is a significant improvement in the classification accuracies by CAL-SC2S 

over the CAG-SC2S and other existing methods. But, to achieve reliable and high 

classification accuracy, CAL-SC2S sacrificed the processing time. Hence, it will be 

beneficial to have an efficient framework that reduces the computation burden without 

reducing accuracy. In this regard, Type-II architecture for CA-SC2S algorithms is proposed 

to enhance the processing time capabilities of existing Type-I architecture. Compared to 

the CAG-SC2S-I and CAL-SC2S-I methods, CAG-SC2S-II and CAL-SC2S-II have 

presented significantly better improvement of at least 5 𝜇𝑠 in FPGA processing time. The 

number of support vectors can further influence this improvement. 

7.2 Major Contributions of Thesis 

In this section, we briefly summarize the main contributions of this thesis. We partition 

them into three different areas and classify them accordingly to the area they naturally fit. 

1. In the area of design and implementation of FPGA-based real-time HSI 

classification, the contribution is following: 

A novel FPGA-based hardware architecture design approach is developed using high-level 

design tools for pixel-level hyperspectral data classification. A rapid FPGA prototyping 

approach using low-complexity design tools for real-time HSI classification is presented. 

This approach is based on performing multiclass prediction by streaming pixels into the 

predesigned FPGA fabric. The proposed hardware FPGA design performs real-time 

processing under strict time, hardware fabric, and power constraints.  
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2. In the area of closed-set and open-set MSI/HSI classification in real-world, real-

time environments, the main contribution is following: 

The developed novel image classification techniques are highly adaptive to both static and 

dynamic environments. In general, image classification techniques are designed to work 

under the assumption of static environments where the classifier faces the same set of KCs 

in training and testing. However, practical applications are dynamic and open-set, i.e., the 

presence of unseen or UCs is unavoidable. To address this issue, novel two-stage 

approaches with different model architectures are developed to perform classification 

efficiently in real-world, real-time environments. 

3. In the area of shadow and illumination invariant image classification, the 

contribution is following: 

The proposed set of new categories of shadow invariant image classification algorithms 

using high-resolution MSIs and HSIs are easily generalizable. It is known that shadows are 

one of the ever-existing ubiquitous challenges in image analysis and still an active area of 

research. As an affordable solution, the proposed novel approaches can successfully 

perform invariant classification of shadows and illumination effect regions by taking 

advantage of the inherent spectral similarity between IL and IS material spectra. Unlike 

existing methods, the proposed techniques are relatively simple and utilize the same 

amount of training data that is required for any supervised MSI/HSI classification.  
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CHAPTER 8 

SUMMARY, CONCLUSIONS, AND FUTURE 

DIRECTIONS 

Prelude: This chapter summarizes the overall observations and conclusions of the studies 

presented in the previous chapters of this thesis. Further, recommendations and future 

research directions in this high-impact and diverse application area of remote sensing 

image analysis research are also presented in this chapter. 

8.1 Summary and Conclusions 

This thesis has investigated and addressed the vital research requirement of developing 

robust and efficient image classification algorithms. This thesis proposed four different 

novel image classification frameworks to improve the accuracy and processing time. For 

ease of readability, we summarize the major conclusions of this thesis as chapter-wise 

below. 

• In Chapter 3, a low-complexity hardware design procedure is introduced to perform 

FPGA-based MSI/HSI classification in real-time environments. The MSVM 

algorithm is designed using a low-power, low-cost, and small-size Arty-35T FPGA 

board. The XSG tool used to verify the hardware logic presents a quick debug 

process in the MATLAB-Simulink environment. The results obtained by the thesis 

indicate the potential future of FPGAs in the development of reconfigurable-based 

online MSI/HSI classification in dynamic environments. 

• Chapter 3 also demonstrated the forced assignment problem of classifiers when the 

information classes are under-sampled. 

• Chapter 4 presented an efficient and robust classification algorithm named SC2S, 

which performs class prediction even in the presence of UCs. 
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• Chapter 4 also demonstrated a benchmark study that can be used to evaluate the 

performance of classification algorithms in open-set test case scenarios of real-

world application environments. The SC2S algorithm developed in this thesis 

shows a positive scope to improves the reliability of classification performance. 

Hence the research queries and hypotheses considered in this thesis may be further 

extended as future studies. 

• Chapter 5 introduced a set of completer automatic frameworks for shadow and 

illumination invariant classification using spectral signatures. This chapter also 

presented a benchmark study to design experimental cases and measure the shadow 

detection rate of an algorithm. 

• Chapter 6 extended the research problem and hypothesis of Chapter 4 to overcome 

the shortcomings of SC2S or CAG-SC2S algorithms. A new algorithm called CAL-

SC2S is proposed to minimize the false predictions for UCs further. Moreover, a 

new modification to the existing Type-I architecture is proposed called Type-II to 

provide computational benefits. 

8.2 Recommendations and Future Research Directions 

Image classification is one of the most vibrant areas, especially in the remote sensing field. 

The following are recommendations for future work related to MSI/HSI classification 

• Other than FPGAs, IC devices and systems such as ASICs, PSoCs, GPUs, and 

cluster computing can be used to explore the time-critical potential hardware 

candidate solutions. Moreover, using different programming approaches and 

architectures for acceleration could also be of interest for future work. Indeed, 

minimal studies are reported in this area. 

• Typically for initiation of the classification work in a real-time environment, pre-

acquired images are used. However, we recommend that if a system connected in 

real-time mode, and deployment of algorithms proposed in this thesis on an onboard 

computation system will be much more critical to understand the intricacies of real-

time image classification perspectives. 
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• The extension and investigation of the proposed techniques on different HSIs/MSIs 

containing diverse LULC settings and varying imaging environment parameters 

could also be of interest. Further studies in this direction can increase the reliability 

of class predictions in real-world environments. We believe that the increase in 

accuracy could be improved by including features other than spectral information. 

• Some critical problems challenging remote sensing image processing to extract 

user-desired relevant information are analyzing the UCs, shadows, and changing 

illumination effects. Devising new frameworks and addressing the challenges 

posed by the uncertainties mentioned above can be undertaken for future study.  
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