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The Model Problem

We consider the nonlinear convection-diffusion-reaction equation

(1)

ou—V - -(KVu)+b-Vu+g(u)=f in €
u =0 on )

where 0 C R? is a bounded domain, K € L®(Q),b € WL>®(Q)?, ¢ € Rand f € L*(Q) with o > 0
and (V - b)(z) = 0, K(z) > Ky > 0, a.e. in ). We also assume that the nonlinearity ¢ € C''(R) with
g(0) =0and ¢'(x) > gy > 0 forxz > 0.
Let V}, = {v), € H&(Q) vy, € H*(E),YE € T3}. The weak form of the SUPG technique is as
follows,
Asupa(up,vp) = Fsupa(vy)  Yup,vp € Vy
where

Asupa(up,vy) =Ap(up,vy) + Sp(up, vp)

Ap(uy,vp) —/ o up vy, +/ K NVuy, - Vv, + / b - Vupy vy, + / g(up) vy,
€2 (2 €2 €2
Splup,vp) = Y g (ouy, — V- (KVup) + glup),b-Vop)+ Y 75(b-Vuy, b- Vo).
EcTy, EeTy,
and Fgrpc(vy) = (f,on) + »  7p(f.b- Vup)
EcTy,
h
The stability parameter 75 1s defined as 7p = ﬁ min { Peg, 1} where Peg [2] is the mesh Peclet
E
number and bg = sup ||b(x)||pe.
el
VEM Discretisation

Let HZY - HY(E) — Qp(F) be the projection operator such that for every u € H'(E),

(vq, v (Hpvuh _ uh)) —0, Vg€ QyE)

and H% . HY(E) — Q,(E) be the projection operator such that for every u € H'(E),

(@ un—Tu—h,) =0, VgeQyE).

The local virtual element space of order p 1s defined as

Vo(E) ={uy, € H'(E) : Auy, € Qu(E), uple € Qple) Ve C E,
(up, q) = (Hkvuh, C]) Vg € Qp(E)/Qp—o(E)}

Now we can define the global VEM space Vf as
Vf = {uh c H&(Q) : uh|E c %(E),VE c ’Th}
where Qy(E)/Qp—2(F) is the subspace of (),(E) containing polynomials orthogonal to Q),—o(E).
The discretization of the VEM-SUPG 1s as follows,

Avsalup,vp) = Fysalop),  Vup, vy € VP
where Ay sa(up,vy) =Al(uy, vy,) + A2(up, vy,) + A3(uyp, vy,) + Bl(uy, vy,) + B2(up, vy,)+
B3(up, vp,) + SUup, vy) + S2(up, vp)

Fysalop) = (f : Hgvh) + > T (f b HB_N%) -
Ee<T,,
and

Bl Up, VL) = Z TE (U ngh — V . KH??_quh, b . H2_1VU}L)

Ee<Ty,

BQ(uh, Uh) — Z TE (b . Hg_lvfuh, b . H2_1V’l)h)
EeTy,

BS(uh, Uh) — Z TE (g(ngh), b - H2_1VUh)
Ee<Ty,

S1(up,vn) = (Kg + gt ) ST ((1 =15 Jup, (1 =11} oy, )
S2(up, vp) = (o + g0) S7 (1 = )y, (1 = 11wy, )

where, K .= sup K(x), K g = inf K(z)and S* is the symmetric bilinear form defined in [2].

=y ) rel
Results
For analysing the scheme, we consider the following appropriate norm,
1/2
2 2 2
lelll = 3 (IVEVolZag + (@ + g0)[0]32(z) + Elb - Vol[F2))
EeTy,

2
Coercivity : Assume the condition 0 < 7 < %min{ . ];E 1.0+

pEluinv[(E)O-7 LZ
constant of g. Then, Ay gz (v, vp,) = %H]vhH\Q Yy, € Vf.

b, where Ly is the Lipschitz

Using Brouwer’s fixed point theorem along with the coercivity, we have the following,

Stability : Let assumptions on 75 be satisfied. Then, the VEM-SUPG scheme admits a solution
up, € V;; satisfying

Hunlll < ClLA L,

with the dual norm [[[f{[|« = sup  Fyga(vp)/|[[vall]
UhEVf?\O

Error estimate : Let u € H(l)(Q) be the solution with v € H*(FE),s > 1, for all £ € T;,. Suppose
that I, ,u € Vf . Then, for the VEM-SUPG scheme it holds that

2(s—1)

h
Ilu = unllP<C 3 gl
EeTy,

o + go)h b2, \\> 1 b% | k3
KE—I—( 920) E—l—TEbE+min max E\/ ; ]%/ g
D EeT, O‘KE TR KE D

Numerical Experiment

In the VEM discretisation, we consider also an alternate option for the term A2(uy,, vy,), which we

denote A2 (up,vy) = (b : H2_1Vuh, Hgvh). Outcomes for both the options are shown and they are

almost similar. Since the equation 1s nonlinear, Newton’s method was employed to solve the arising
nonlinear system of equations. The stopping criteria for Newton’s loop was set as 1075,
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Figure 1: Polygonal meshes : Voronoi(le ft, hexagon(center) and nonconvex(right) mesh.

The domain 1s discretised using a family of the polygonal meshes, with mesh diameter in the range
1071 - 1072 A sample mesh for each family 1s shown 1n figure 2.

Problem 1

We have Q = (0,1)? with ¢ = 12, b(z) = (2,3), and g(u) = u°. The source term f is determined
such that the solution u 1s given by

u(x,t) =16x1(1 — x1)xo(l — x9) X

[0.5 + 7 larctan (200 (0.252 — (21— 0.5)% — (29 — 0,5)2)) ] | (2)

In this example, we conduct numerical test for three different small diffusion coefficients, namely,
e = 1073, ¢ = 1079, and ¢ = 107, We use Dirichlet boundary values prescribed by the exact
solution. The solution admits circular interior layer. The convergence rates are presented for both
the options A2 and A2. It is observed that similar results are obtained for both these options, on the
considered meshes. The expected rate of convergence achieved for the VEM orders p = 1 and p = 2,
for ¢ = 107°% on Voronoi mesh is presented. We mention (not shown here) that similar rates were
obtained for the other epsilon(e = 1073, 1079) as well.

Voronoi mesh, p=1, ¢ = 10~

h €h.0 €h,1 "h0 Thl €h0 €h,1 "h0 Thil
0.197119]6.700985e-02 3.100322 - - 6.718384e-02 3.100649 - -
0.105796 | 3.798898e-02 2.595629 0.82 0.26 3.800486¢-02 2.595668 0.82 0.26
0.051281|1.590650e-02 1.854286 1.25 0.48 1.594259e-02 1.857973 1.25 048
0.026065|5.577630e-03 1.123444 1.51 0.7215.509496¢e-03 1.119906 1.53 0.73
0.012514|1.2918935e-03 5.288503e-01 2.11 1.09/1.246919e-03 5.252897¢-01 2.14 1.09

Voronoi mesh, p=2, € = 10~

h €h.0 €n1 Tho Thil €h0 €n1 Tho Thi
0.197119 3.814583e-02 2.623398 - - 3.827998e-02 2.626769 - -
0.105796 | 1.639883e-02 1.829960 1.22 0.521.640535e-02 1.831642 1.22 0.52
0.05128114.716297e-03 9.457611e-01 1.79 0.954.734615e-03 9.492477e-01 1.79 0.95
0.026065 | 1.093927e-03 3.766024e-01 2.11 1.33/1.092445e-03 3.795338e-01 2.11 1.32
0.012514 19.931297e-05 8.432417e-02 3.46 2.1619.522849¢-05 8.346176e-02 3.52 2.18
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