

Effect of secondary electrons on Hall Effect Thruster discharge

 B. Priyanka¹, M. M. Asif¹, R. Jayanth¹, J.Chinmayi Sai¹, K. Jesal¹ and Umesh R. Kadhane¹
 ¹Department of Physics, Indian Institute of Space Science and Technology, Thiruvananthapuram-695547, India.

Introduction	Design & Simulation Requirements	0.035	Pseudocia Vaz nodat
Electric Propulsion (EP) - converts electrical energy into kinetic energy by ionizing a gas and	\triangleright The major assumptions used for the simulation are the following.	0.030 0.025 K	Max 0.022 Max 0.022
then accelerating the exhaust through electrostatic	• Radial magnetic field is considered for simulation.	0.020	
or electromagnetic means.	• Electrostatic solver has been used.	0.015	
Hall thrusters [1] - electrostatic thrusters	• Neutrals are treated as background gas with linear		0.010 0.020 0.030 0.040 Z
which utilize a cross-field described by the Hall	density drop from anode to exit of channel.]	Fig. 4. The magnetic field topology (Max radial magnetic field $= 180$ C)
magnetized electrons and unmagnetized ions in	• The Xe neutral density has been predefined as a		magnetic field – 180G).
the axial electric and radial magnetic fields annlied	constant, and is taken as $10^{21}/\text{cm}^{3}$.		Kesults & Discussions
in an annular acromic abannal and the discharge	• The electron energy is also predefined to be 25eV.	0.035	

in an annular ceramic channel, and the discharge voltage controls the electrons which diffuse across the magnetic field.

- The cathode has been modelled as electron emitter close to exit.
- The cathode voltage is kept at absolute zero.
 ➤ The particle collision is handled by MCC. The collisions include electron-neutral collisions (ionization, excitation, and elastic scattering) as well as ion-neutral collisions (charge exchange and elastic scattering).

PIC-MC Simulation

 \blacktriangleright PIC-MC [2], - a kinetic model [3] for plasma simulations - both the electrons and the ions are treated as particles in a self-consistent electric and magnetic fields.

Computes the motion of a collection of charged particles, interacting with each other and also with the externally applied fields.

Assign charge density to grid $x \rightarrow 0$

Solve Poisson's equation and calculate the electric field $\rho_k \longrightarrow \Phi_k, E_k$

Magnetic Field Topology

The magnetic field is calculated by the 2D model and the magnetic field topology was simulated and incorporated into the code in analytical form, a combination of 3 Gaussian

curves,

$$B_r(r,z) = \frac{A \exp\left[\frac{(-4 \ln 2)(z-z_c)^2}{w^2}\right]}{w\sqrt{\frac{\pi}{4 \ln 2}}}$$

The geometry of the new HET has been shown in Fig. 3(a) and the Fig. 3(b) gives the magnetic flux lines (designed using MAXWELL) in the 2D plane.

[2] P. L. Pritchett, Space Plasma Simulation, Lecture Notes in Physics,615, Springer, Berlin, Heidelberg (2003)

[3] C. K. Birdsall, IEEE Trans. Plasma Science 19, 65 (1991)