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Abstract  We study the classical optic entanglement between the radial and angular degrees of freedom in Laguerre-Gaussian mode superpositions with regard to 

symmetric first-order optical systems. The role of Gouy phase picked by a Laguerre-Gaussian mode on free propagation in regard to the radial-angular 

entanglement in the mode superpositions is brought out. We obtain a witness of radial-angular entanglement in two mode Laguerre-Gaussian superpositions which 

is demonstrated to be a robust free space signaler in the presence of atmospheric turbulence. 

Fig. 1. 𝐸 Ψ against 𝑑 for the three-
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Ψ11 𝑟, 𝜃 +
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Ψ21(𝑟, 𝜃) .
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Fig. 3. (a), (c) 𝐸 Ψ𝑝 against distance of propagation 𝑑 for Ψ1𝑛 𝑟, 𝜃 with 𝑛 = 2 [Eq. (1)] and 

𝐶𝑛
2 ≈ 10−13 m−2/3 and 10−14 m−2/3, respectively, for 100 samples, for 𝑑 up to 2 km and 4 km; 

(b), (d) 𝑁 against distance of propagation 𝑑 for the samples in (a) and (c), and corresponding 

strengths of turbulence; (e), (g) [and (f ), (h)] same, but for Ψ1𝑛 𝑟, 𝜃 with 𝑛 = 3 for the 

respective strengths of turbulence. In all the frames, the dark line shows either 𝐸(Ψ) or 𝑁(= 1)
in the absence of atmospheric turbulence.

Conclusion
To conclude, we have studied radial-angular entanglement in LG mode 

superpositions with respect to symmetric first-order optical systems. The role of 

the Gouy phase in this regard has been brought out. We have seen examples of LG 

mode superpositions for which a symmetric first-order optical system preserves the 

radial-angular entanglement. The examples studied suggest that atmospheric 

turbulence can alter the radial-angular entanglement in a mode superposition on 

propagation through atmospheric turbulence. We have illustrated through examples 

how the defined witness of radial-angular entanglement can be effective as a free 

space signaler. This suggests that classical optic entanglement can indeed be of 

practical value, particularly in the context of free space optical communication.

Introduction
Paraxial light fields are solutions of the paraxial wave equation and retain their 

paraxiality on passage through symmetric first-order optical systems. Examples of 

such light fields are the Laguerre-Gaussian (LG) modes:

Ψ𝑗𝑚 𝑟, 𝜃 = 𝜓𝑗𝑚 𝑟; 𝑞 × Θ𝑚 𝜃 ,  where                           

𝜓𝑗𝑚 𝑟; 𝑞 =
2
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𝑞
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𝑅
+

𝑖 𝜆

𝜋𝑤^2
and  Θ𝑚 𝜃 = exp[𝑖2𝑚𝜃]

Here 𝐿𝑗− 𝑚
2 𝑚 . is the Laguerre polynomial with radial and azimuthal indices 𝑗 and 𝑚, 

𝑤 is the width of the beam waist, 𝜆 is the wavelength, and 𝑞 is the complex field 

parameter. For an LG mode propagating from the waist plane, we have

𝑤2 ≡ 𝑤2 𝑑 = 𝑤2 0 1 +
𝑑

𝑑𝑟

2
, and    𝑅 ≡ 𝑅 𝑑 = 𝑑 1 +

𝑑𝑟

𝑑

2
,

where 𝑑 is the distance of propagation from the waist plane, 𝑤(0) is the waist plane 

width, and 𝑑𝑟 =
𝜋𝑤 0 2

𝜆
.

Fig. 2. (a), (b) Witness of radial–angular entanglement 𝑆 against distance of propagation 𝑑 for 

100 samples for 𝑛 = 1,3, 5, and 7 and 𝐶𝑛
2 ≈ 10−12 m−2/3 and 10−13 m−2/3, respectively, for 

Ψ1𝑛 given in Eq. (1), for 𝑑 up to 1 km and 2 km, respectively; (c) same, but for 𝑛 = 1,2, 3, and 

4 and 𝐶𝑛
2 ≈ 10−14 m−2/3, and for 𝑑 up to 5 km for Ψ1𝑛 𝑟, 𝜃 . The dark line in each of these 

frames shows 𝑆 for the respective Ψ1𝑛 𝑟, 𝜃 in the absence of atmospheric turbulence.

Unitary Transformations
Free propagation unitary transformation: 

𝑈𝑓 𝑑 = exp −𝑖
𝑑𝜆

4𝜋
𝛻⊥

2 , where 𝛻⊥
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Thin lens unitary transformation: 

𝑈𝑙 𝑓 = exp
−𝑖𝜋

𝜆𝑓
𝑟2

Action of free propagation unitary on an LG mode:

𝑈𝑓 𝑑 𝜓𝑗𝑚 𝑟; 𝑞 Θm 𝜃 = 𝑒−𝑖𝜙𝑗 𝑞;𝑑 𝜓𝑗𝑚 𝑟; 𝑞′ Θ𝑚(𝜃), where 𝑞′ = 𝑞 + 𝑑, and

𝜙𝑗 𝑞; 𝑑 = − 2𝑗 + 1 tan−1
𝜆

𝜋𝑤2
1

𝑑
+

1

𝑅

Action of thin lens unitary on an LG mode:

𝑈𝑙 𝑓 𝜓𝑗𝑚 𝑟; 𝑞 Θm 𝜃 = 𝜓𝑗𝑚 𝑟; 𝑞′ Θ𝑚(𝜃),    where      
1

𝑞′
=

1

𝑞
−

1

𝑑

Any symmetric first-order optical system is realized as a sequence of free 

propagations and thin lenses.

Simulation Results

Classical Optic Radial-angular Entanglement
A paraxial field Ψ 𝑟, 𝜃 , which is a finite superposition of LG modes, on Schmidt 

decomposition gives:

Ψ 𝑟, 𝜃 =  

𝑗,𝑚

𝑐𝑗𝑚 Ψ𝑗𝑚 𝑟, 𝜃 =  

𝑗,𝑚

𝑑𝑗𝑚 𝜓𝑗 𝑟; 𝑞 Θm(𝜃)

We define (𝑗, 𝑚)th matrix entry of 𝐷 as 𝐷 𝑗,𝑚 = 𝑑𝑗𝑚 and Λ = 𝐷†𝐷. The radial-

angular entanglement 𝐸 Ψ of Ψ(𝑟, 𝜃) is defined through the eigenvalues of Λ as 

𝐸 Ψ = −  𝑖 𝜆𝑖 log 𝜆𝑖.

Observations
• For any mode superposition Ψ 𝑟, 𝜃 , the radial-angular entanglement is invariant 

under transverse plane rotation.

• For any mode superposition Ψ(𝑟, 𝜃) with constituent modes of distinct 𝑗 and 𝑚
indices, the radial-angular entanglement in Ψ(𝑟, 𝜃) is invariant on passage through 

any symmetric first-order optical system.

• For any mode superposition Ψ(𝑟, 𝜃), with constituent modes having a fixed 𝑗
index and varying 𝑚 index, the radial-angular entanglement in Ψ(𝑟, 𝜃) is invariant 

on passage through a symmetric first-order optical system.

• Free propagation can in general create, preserve, or destroy radial-angular 

entanglement in a mode superposition Ψ 𝑟, 𝜃 .

Witness of Radial-angular Entanglement
We define a measurable quantity, 𝑆 which serves as a witness of radial-angular 

entanglement, which is also a possible free space signaler.

𝑆 =
𝑟2

𝑤2(𝑑)

−𝑖𝜕
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−

−𝑖𝜕
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𝑤2(𝑑)

For a two mode superposition, Ψ 𝑟, 𝜃 = 𝑐𝑗1𝑚1
Ψ𝑗1𝑚1

𝑟, 𝜃 + 𝑐𝑗2𝑚2
Ψ𝑗2𝑚2

(𝑟, 𝜃)

𝑆𝑗2𝑚2

𝑗1𝑚1 = 2 𝑐𝑗1𝑚1
|2  𝑐𝑗2𝑚2

2
j1 − j2 m1 − m2 .

Example:
Consider the two mode LG superposition with mode indices 𝑗1, 𝑚1 = 0, 0 and 

𝑗2, 𝑚2 =
3𝑛

2
,
𝑛

2
, i.e., 

Ψ1𝑛 𝑟, 𝜃 = (𝑛 − 1)/𝑛Ψ00 𝑟, 𝜃 +  1 𝑛 Ψ3𝑛

2

𝑛

2

(𝑟, 𝜃) (1)

The witness of radial-angular entanglement for such a mode superposition is given 

by   𝑆3𝑛

2

𝑛

2

00 =
3(𝑛−1)

2
.

Propagation through Atmospheric Turbulence
While both 𝑆 and 𝐸(Ψ) remain invariant on free propagation for a two mode 

superposition, they need not be invariant as the superposition propagates through 

atmospheric turbulence. The phase spectrum of a two dimensional random phase 

can be written in terms of the Kolmogorov power spectral density as:

Φ𝜃 𝐾 = 2𝜋
2𝜋

𝜆

2
𝛿𝑑Φ𝑛 𝐾 where 𝛿𝑑 is length of the interval, with         

Φ𝑛 𝐾 = 0.033 𝐶𝑛
2 𝐾−11/3


