

Aniket Prasad^{1†}, Aru Beri^{2,3}, Samir Mandal¹, Alexandar A. Mushtukov⁴

¹Indian Institute of Space Science and Technology, Thiruvananthapuram, India ²Indian Institute of Science Education and Research Mohali, India ³ University of Southampton, UK ⁴University of Oxford, UK

Abstract

Ultraluminous X-ray pulsars (ULXPs) are a subset of ultraluminous X-ray sources powered by accreting neutron stars with strong magnetic fields. ULXPs exhibit luminosities exceeding the Eddington limit for a neutron star (typically ~10³⁸ erg/s), often reaching values up to ~10⁴⁰ erg/s. Swift J0243.6+6124 is the only known Galactic ULXP that offers a unique opportunity to study emission variability due to its proximity and brightness. In this study, we examine the evolution of the pulse fraction, and phase-resolved deviations using all the existing observations of Swift J0243.6+6124 during its recent outburst in 2023. We present our results from this detailed investigation of this source.

Introduction

□ Very few known ULXPs have been observed till date such as M82 X-2 (Bachetti et al. 2014), NGC 7793 P13, NGC **5907 ULX1** (Israel et al. 2017), **NGC 300 ULX1** (Carpano et al. 2018), NGC 1313 X-2 (Sathyaprakash et al. 2019) with all of them being extragalactic sources. Swift J0234.6+6124 is a Be/X-ray binary that was detected in 2017 during its giant outburst as the first Galactic ULXP.

Observation

- □ The NICER XTI instrument observed the source during the 2023 outburst with coverage of the 1-10 keV range.
- □ There are ~60 observations under consideration between June and September 2023, which is the outburst phase.

Pulse Fraction

□ Computed using folded pulse profile for all NICER observations.

□ We use the luminosity calculated from NICER for energies between 1 and 10 keV.

Source Parameters		
Period	~9.8 sec	
Optical Companion	O9.5 Ve	
Peak Luminosity (0.1 – 10 keV)	~2 x 10 ³⁹ erg/s	

□ The accretion on neutron stars at the super-Eddington regime has been explained using simulations that invoke the formation of a shock region in the hollow accretion column. (Kawashima et al. 2016) (refer to Fig 1), sustaining accretion at such limits.

Fig 4: SWIFT BAT Monitor light curve plotting for 2023 in MJD

□ Indicates the contribution of pulsation over continuum.

Fig 5: Pulse fraction for all NICER observations during outburst plotted against SWIFT luminosity computed from count rate by constant factor with distance=6.8 kpc (refer Doroshenko et al 2019)

Pulse Profile and RMS Variation

Average Pulse profile plotted as photon flux variation for 2 phase cycles using NICER data from 1-10 keV for different luminosity through the outburst.

□ RMS for each phase bin normalized with the mean flux of the observation was computed to find the stability of the pulsations.

Fig 1: Schematic of supercritical accretion column (Kawashima et al 2016)

• Other studies like *Mushtukov et al 2019* and *Doroshenko* et al 2020 have shown the possible existence of a radiation-pressure dominated inner accretion disk and accretion through envelope with the prediction of wind outflows for highly magnetized neutron stars (refer to Fig 2) following formation of super-Eddington accretion disks

Fig 2: Schematic of accretion disk on neutron star (Mushtukov et al 2019)

□ The pulse profile of the source **shows** complex morphology that was luminosity-dependent. The profiles also changed significantly above L=10³⁸ erg/s (Wilson-Hodge et al. 2018; Tsygankov et al. 2018; Beri et al. 2020). The profiles also change with energy with variations till 150 keV during outburst phases, as can be seen in Fig 3.

Fig 6: Pulse profile plotted for three NICER observations representing increasing luminosity from top panel to bottom. Left panels are corresponding RMS normalized by mean flux

Summary

- □ The Average Pulse profile shifts from a single peak symmetric structure to a transitionary structure as luminosity rises with a broad structure at the peak luminosity (L=9.0 x 10³⁷ ergs/s) of outburst in NICER energy ranges.
- □ The pulse fraction at the same time shows a slight increase from 12% to 15% (Fig 5) during the rising and declining outburst phase.
- □ Thus, we aim to investigate the accretion dynamics of this ULXP by probing the **dependence of timing** features on luminosity and energy for the 2023 outburst.

Fig 3: Pulse profile evolution as observed with AstroSat-SXT, LAXPC, CZTI 2017 outburst from (Beri et al 2020)

- There is a presence of variability in the pulsar emission at timescales smaller than the spin period, as indicated by the RMS profile (**Fig 6**). The RMS variability closely follows the pulse profile for all luminosity.
- U We have also found that the RMS profile varies with luminosity during this outburst, hinting towards a possible relation with the accretion flow in this system.

Reference	Contact Information	
 Colleen A. Wilson-Hodge <i>et al.</i> 2018 <i>ApJ</i> 863 9 Mushtukov et al. 2019 MNRAS Volume 484, Issue 1, Pages 687–697 Kawashima et al 2016 PAS I. Volume 68, Issue 5, 83 	Aniket Prasad	Connect on LinkedIN
 A. Beri et al. 2021 MNRAS Volume 500, Issue 1, Pages 565–575 Doroshenko et al. 2020 MNRAS Volume 491 (2020) 2, 1857-1867 Tsygankov et al. 2007 Astron. Lett. 33, 368–384 Bacheti et al. 2014 Nature 514, 202-204 	MS Astronomy and Astrophysics Department of Earth and Space Sciences, IIST India	
 8. Israel et al 2017 MNRAS Letters Volume 466 Issue 1, Pages L48-L52 9. Sathyaprakash et al 2019 MNRAS Letters Volume 488 Issue 1, Pages L35-L40 Happy to collaborate on X-ray/ Radio Pulsars!! 	Email: <u>aniketprasad.nita@gmail.com</u> Contact: +91-8210248125	