Skip to main content
Default Banner

Statistical Models and Analysis

An overview of basic probability theory and theory of estimation; Bayesian statistics; maximum a posteriori (MAP) estimation; conjugate priors; Exponential family; posterior asymptotics; linear statistical models; multiple linear regression: inference technique for the general linear model, generalised linear models: inference procedures, special case of generalised linear models leading to logistic regression and log linear models; introduction to non-linear modelling; sampling methods: basic sampling algorithms, rejection sampling, adaptive rejection sampling, sampling and the EM algorith

Advanced Machine Learning

Kernel Methods: reproducing kernel Hilbert space concepts, kernel algorithms, multiple kernels, graph kernels; multitasking, deep learning architectures; spectral clustering ; model based clustering, independent component analysis; sequential data: Hidden Markhov models; factor analysis; graphical models; reinforcement learning; Gaussian processes; motiff discovery; graph-based semisupervised learning; natural language processing algorithms.

Foundations of Machine Learning

Machine learning basics: capacity, overfitting and underfitting, hyperparameters and validation sets, bias & variance; PAC model; Rademacher complexity; growth function; VC-dimension; fundamental concepts of artificial neural networks; single layer perceptron classifier; multi-layer feed forward networks; single layer feed-back networks; associative memories; introductory concepts of reinforcement learning, Markhov decision process.

Event Details

Select a date to view events.