Optical System Analysis and Design
Aberrations: Transverse ray and wave aberrations, chromatic aberration, Ray tracing: paraxial, finite and oblique rays, Image evaluation: transfer functions, point spread function, encircled energy and its computation and measurement, optimization techniques in lens design, merit function, damped least square methods, orthonormalization, and global search method, Tolerance analysis; Achromatic doublets, achromats and aplanats; Cooke triplet and its derivatives; Double Gauss lens, Zoom lenses and aspherics, GRIN optics, focal shift, high and low N number focusing systems, focusing of light i
Adaptive Optics
Atmospheric turbulence – source of turbulence: free atmosphere, mirror seeing, dome seeing, boundary layer. Role of Kelvin-Helmoltz instability. Kolmogorov model of turbulance. Outer scale and inner scale,Reynolds number.
Guided Wave Optics
Basic characteristic of Optical Fiber Waveguides – Ray theory- Acceptance angle, Numerical aperture,skew rays - Electromagnetic Modes in Planar waveguides and Cylindrical Waveguides, Goos-Haenchen shift - Step index and Graded index Fibers- Single Mode and multimode fibers Dispersion in single mode fibers- dispersion induced limitations- dispersion management, Fiber lossesattenuation coefficient, Nonlinear optical effects-SRS, SBS, SPM - modal birefringence and polarization maintaining fibers Measurement Methods in Optical Fibers – attenuation, refractive index profile, numerical aperture p
Fourier Optics
Introduction to linear vector spaces, bases and dimension, inner product, orthogonality, Fourier series,orthogonal polynomials, Cauchy Schwartz inequality, eigenvalues, eigenvectors, Hermitian operators,unitary operators, discrete Fourier transform.
Lasers and Optoelectronics
Quantum Theory of Atomic Energy Levels – Radiative and Nonradiative decay of excited state atoms –Emission Broadening and linewidth – Radiation and Thermal equilibrium – Conditions for laser action –Laser Oscillation above threshold - Laser Amplifiers – Requirements for obtaining population inversion –Rate Equations for three and four level systems – Laser pumping requirements – Laser Cavity modes –Stable resonators – Gaussian beams- Special Laser Cavities – Q-switching and Mode locking –Generation of ultra fast Optical pulses- Pulse compression
Optical Fabrication and Testing
Optical materials: Glasses, IR materials, Optical, mechanical and thermal properties of optical materials,Fabrication of lenses, mirrors and flats: spherical curve generation, polishing and figuring of “CurvedSurfaces” of glass materials, Aspheric surface polishing/figuring, Polishing and figuring of IR materials:Ge, ZnSe and Zns, Advanced computer controlled polishing: Techniques, MRF polishing, Ion polishing,Micro-optics fabrication techniques, Large Mirrors fabrication techniques,
