-
Nanocomposites
Nanocomposites for structural applications Development of high strength toughened epoxy nanocomposite by interphase modification of nanofiller and polymer matrix is under progress. Chemical modification has been carried out on the surface of carbon nanotube and graphene oxide to improve mechanical properties of epoxy composite system.
Development of nanoclay based rubber nanocomposites for improved gas barrier properties have been developed.
-
Surface Engineering
Tuning of surface properties of nanomaterials is required to overcome the inherent limitations of nanomaterials. Plasma surface modification, an eco friendly dry method, is used for the surface functionalization of carbon based nanomaterials like carbon nanotube, graphene, and carbon based hybrid nanomaterials. Potential applications of plasma functionalized nanomaterials in the areas of nanocomposite and as working electrode in electrochemical sensor are being explored.
-
Synthetic Organic Chemistry
- Computational design and development of theranostic agents Our group focuses on the design of molecules for customized applications followed by their chemical synthesis using organic reactions and testing. Currently, molecular systems are being developed for medical applications with a special emphasis on theranostic applications.
- Combinatorial chemistry, drug discovery and drug delivery The principles, tools and techniques of combinatorial chemistry are being explored by our group to develop novel molecular entities centred around heterocyclic cores to enhance molecular diversity. The libraries are initially screened using docking studies employing cancer biomarkers and promising systems are chemically synthesized and tested for anticancer activities followed by protein binding studies. For targeted drug delivery, we currently employ dendrimers.
- Self assembled molecular architectures Self-assembly of molecules into well-defined nanostructures with controlled size, morphology and optical properties is a challenging task in the “bottom-up” construction of supramolecular architectures. Herein our department, we are focusing on the development of self-assembled molecular architectures from bioresources and controlling the self–assembly via concerted action of noncovalent interactions. These self-assembled architectures have potential uses in molecular devices, stimuli responsive materials, solar cells etc.
-
Biomaterials
Nanostructured materials assume great importance in tissue engineering and drug delivery applications. We work on development of nanofibrous scaffolds based on natural polymers for medical applications such tissue engineering and wound dressing materials.
Polymeric drug conjugates, nanogels and polyelectrolyte complexes are being developed and explored for effective delivery of hydrophobic drugs.