Skip to main content
a

Atmospheric Thermodynamics and Cloud Physics

Basic concepts, composition of the atmosphere, equation of state, hydrostatic equilibrium, first law of thermodynamics, application of first law, entropy, second law, heat capacity, dry adiabatic processes, transfer processes, moist thermodynamic processes in atmosphere, static stability, cloud characteristics and processes, Global energy and entropy balances, thermodynamic feedback in the climate system, thermodynamic diagrams.

Radiation Processes in Atmosphere

The spectrum of electromagnetic radiation; Solid angle, Fundamental of radiometric quantities, Concepts of scattering, absorption and polarization of radiation, Quantitative description of radiation; Blackbody Radiation: The Plank Function, Wiens displacement Law, The StefanBoltzmann Law; Kirchoff’s Law, Radiative equilibrium.

Absorption line profiles: Line formation and line shape, Absorption and emission by gas molecules, Physics of scattering and absorption by particles, Rayleigh Scattering, Raman Scattering, Lorentz-Mie theory of light scattering, Geometric Optics.

Earth Resources and Tectonic Systems

Internal Structure of Earth:

Introduction to Earth and formation theories. Seismicity and earth’s interior. Compositional and
Rheological divisions of Earth; crust, mantle and core; discontinuities. Mineralogy and Earth
Resources. Minerals, ores, petroleum, coal and natural gas- their origin, structure and composition,
accumulation/migration, source/reservoir rocks, distribution in space and time. General physical,
chemical and optical properties of common rock forming minerals.

Igneous, Metamorphic and Sedimentary Petrology:

Physical and Dynamical Oceanography

Unit I:

Physical properties of Sea water, density of sea water, density parameters, specific volume
anomaly, Temperature, Salinity, Cholorinity and their determination, distribution of temperature,
salinity and density in space and time, The oceanic Mixed Layer and Thermocline, Sea level
variation, acoustical and optical properties of sea water, Formation and classification of water
masses, T-S diagram and Water masses of the world ocean.

Dynamics of Atmosphere

Concept of fluid, Continum model, Lagrange and Eulerian description of fluid flow, continuity,
momentum and energy equations, boundary layer theory, turbulent flow, Inertial
and Non Inertial frames; Fundamental Forces - Pressure Gradient Forces, Gravitational Force,
Friction or Viscous Force, Apparent forces -Centrifugal Force, Coriolis force, Rossby number,
Effective Gravity; Hydrostatic balance, Momentum Equations-Cartesian Coordinate System,
Spherical – Polar coordinate system. Scale analysis of momentum equations. Balanced motion -

Quantum Information Theory

Quantum bits and quantum gates: quantum bits, basic computations with 1-qubit quantum gates, Pauli matrices or I, X, Y, Z-gates, Hadamard matrix gate or H-gate, quantum gates with multiple qubit inputs and outputs, quantum circuits, non cloning theorem.

Quantum measurements: quantum measurements and types, quantum measurements in the orthonormal basis,  Projective  or  von-Neumann  measurements,   POVM   measurements,   quantum   measurements on joint states.

Nano Optics

Theoretical Foundations: Macroscopic electrodynamics, wave equations, time harmonic fields, Dyadic Green’s function, Evanescent fields. Propagation and focusing of optical fields – field operators, paraxial approximation of optical fields, polarized electric and magnetic fields, focusing of fields, point spread function, principles of confocal microscopy, near field optical microscopy, scanning near –field optical microscopy.

Quantum Optical Communication

Quantum theory of light: quantization of the electromagnetic field, evolution of the field operators, quantum states of the electromagnetic field. Quantum information processing: quantum information, quantum communication, quantum computation with qubits, quantum computation with continuous variables. Density operators and super operators, fidelity, entropy, information and entanglement measures, correlation functions and interference of light, photon correlation measurements.

Laser Applications

Laser for detection and ranging- LIDAR applications-Doppler wind LIDAR, Differential Absorption LIDAR for water vapor monitoring. Laser application in material processing – esp. CO2, YAG , Excimer,Ruby lasers-[material processing, Cutting, Welding, drilling, micro machining] – Interation of laser radiation with matter, Heat Flow Theory, Process characteristics etc. Laser anemometry, Schlieren Techniques for wind tunnels, Holography etc Lasers for metrology – Interferometery for surface characterization, precision length measurement, time standards etc, Medical applications of laser.

Event Details

Select a date to view events.